Skip to main content Accessibility help
×
Home

Trophic relationships among terrestrial molluscs in a Hawaiian rain forest: analysis of carbon and nitrogen isotopes

  • Wallace M. Meyer (a1) and Norine W. Yeung (a1)

Extract

Soil and adjacent leaf-litter environments support a diverse decomposer fauna. This has led to what is known as ‘the enigma of the soil fauna’, or the question of how it is possible for such large numbers of species to coexist without obvious biotic mechanisms, such as competitive exclusion, limiting coexistence (Anderson 1975). Dietary specialization or effective partitioning of food resources could be a mechanism to avoid niche overlap among sympatric soil/litter species (Chahartaghi et al. 2005, Jennings & Barkham 1975). However, unravelling the complexities of trophic relationships can be difficult, especially in soil/leaf-litter habitats where both consumers and prey are small, diverse and often unidentifiable (Scheu & Falca 2000). As such, the trophic relationships among species in these habitats typically remain unresolved.

Copyright

Corresponding author

1Corresponding author. Current address: Department of Entomology, University of Arizona, 1140 E. South Campus Dr., Forbes 410, Tucson, AZ, 85721, USA. Email: wmm@email.arizona.edu.

References

Hide All
ANDERSON, J. M. 1975. The enigma of soil animal species diversity. Pp. 5158 in Vanek, J. (ed.). Progress in soil zoology. Prague Academia, Prague.
BARRADA, M., IGLESIAS, J. & CASTILLEJO, J. 2004. Utilization of weeds and crop plants by the pest slug, Deroceras reticulatum (Muller, 1774). Biological Agriculture and Horticulture 22:185198.
CHAHARTAGHI, M., LANGEL, R., SCHEU, S. & RUESS, L. 2005. Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biology and Biochemistry 37:17181725.
COOK, A. & RADFORD, D. J. 1988. The comparative ecology of four sympatric limacid slug species in Northern Ireland UK. Malacologia 28:131146.
COWIE, R. H. 2001. Invertebrate invasions on Pacific islands and the replacement of unique native faunas: a synthesis of land and freshwater snails. Biological Invasions 3:119136.
COWIE, R. H., EVENHUIS, N. L. & CHRISTENSEN, C. C. 1995. Catalog of the native land and freshwater molluscs of the Hawaiian Islands. Backhuys Publishers, Leiden. 248 pp.
COWIE, R. H., HAYES, K. A., TRAN, C. T. & MEYER, W. M. 2008. The horticultural industry as a vector of alien snails and slugs: widespread invasions in Hawaii. International Journal of Pest Management 54:267276.
EGGERS, T. & JONES, T. H. 2000. You are what you eat . . . or are you? Trends in Ecology and Evolution 15:265266.
GREGORICH, E. G., LIANG, B. C., DRURY, C. F., MACKENZIE, A. F. & McGILL, W. B. 2000. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biology and Biochemistry 24:581587.
HÖGBERG, P., HÖGBERG, M. N., QUIST, M. E., ECKBLAD, A. & NÄSHOLM, T. 1999. Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestris. New Phytologist 142:569576.
JENNINGS, T. J. & BARKHAM, J. P. 1975. Food of slugs in mixed deciduous woodland in Norfolk, England. Oikos 26:211221.
KAEHLER, S. & PAKHOMOV, E. A. 2001. Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms. Marine Ecology Progress Series 219:299304.
MARTIN, A., BALESDENT, J. & MARIOTTI, A. 1992. Earthworm diet related to soil organic matter dynamics through 13C measurements. Oecologia 91:2329.
MEYER, W. M. 2009. Status and ecological importance of rainforest land snails on the island of Hawaii. Ph.D. dissertation, University of Hawaii at Manoa, Honolulu, 156 pp.
MEYER, W. M. & COWIE, R. H. 2010a. Invasive temperate species are a threat to tropical island biodiversity. Biotropica 42:732738.
MEYER, W. M. & COWIE, R. H. 2010b. Feeding preferences of two predatory snails introduced to Hawaii and their conservation implications. Malacologia 53:135144.
OSTROM, P. H., COLUNGA-GARCIA, M. & GAGE, S. H. 1997. Establishing pathways of energy flow for insect predators using stable isotope ratios: field and laboratory evidence. Oecologia 109:108113.
PONSARD, S. & ARDITI, R. 2000. What can stable isotopes (d15N and d13C) tell about the food web of soil macroinvertebrates? Ecology 81:852864.
POST, D. M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703718.
SCHEU, S. & FALCA, M. 2000. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and mesofauna-dominated community. Oecologia 123:285296.
SCHMIDT, O., CURRY, J. P., DYCKMANS, J., ROTA, E. & SCRIMGEOUR, C. M. 2004. Dual stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food resources. Pedobiologia 48:171180.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed