Skip to main content Accessibility help

The role of the regeneration niche for the vertical stratification of vascular epiphytes

  • Katrin Wagner (a1), Wiebke Bogusch (a1) and Gerhard Zotz (a1) (a2)


Vertical stratification of vascular epiphytes is frequently attributed to niche partitioning along microclimatic gradients but experimental confirmations of this notion are rare. This study investigates the role of the regeneration phase for the stratification of five bromeliad (Catopsis sessiliflora, Guzmania subcorymbosa, Tillandsia anceps, T. bulbosa and Werauhia gladioliflora) and seven aroid species (Anthurium acutangulum, A. brownii, A. clavigerum, A. durandii, A. friedrichsthalii, A. hacumense and A. scandens) in a Panamanian rain forest. We documented gradients of temperature, vapour pressure deficit and light (n = 10 d) as well as species height distributions (n = 11–120). Microclimatic gradients were substantial (maximal T and RH differences between strata: 5 °C and 18%, respectively) and mean attachment heights of the study species (range = 4–21 m) differed significantly. We tested sensitivity to recurrent drought (four treatments) during germination (all species, cumulative germination of 20 seeds, n = 3) and seedling growth (four aroid species, n = 25). Seedling survival of six aroid species transplanted to three heights (n = 27) was monitored in situ. Some species did not germinate under severe recurrent drought while others germinated at the same rate in all treatments. Seedlings of the most exposed species grew fastest under intermediate recurrent drought while those of the other three species grew fastest when kept constantly wet. Survival of transplanted seedlings did not depend on species attachment height, but this may be attributable to insufficient statistical power. Taken together, the results suggest that the stratification can be explained to a large degree by differential sensitivity to the vertical moisture gradient during the regeneration phase.


Corresponding author

1Corresponding author. Email:


Hide All
ANDRADE, J. L. & NOBEL, P. S. 1997. Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica 29:261270.
BADER, M., MENKE, G. & ZOTZ, G. 2009. A pronounced drought tolerance characterizes the early life stages of the epiphytic bromeliad Tillandsia flexuosa. Functional Ecology 23:472479.
BENZING, D. H. 2000. Bromeliaceae – Profile of an adaptive radiation. Cambridge University Press, Cambridge. 690 pp.
CALLAWAY, R. M., REINHART, K. O., MOORE, G. W., MOORE, D. J. M. & PENNINGS, S. C. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221230.
CROAT, T. B. 1978. Flora of Barro Colorado Island. Stanford University Press, Stanford. 943 pp.
DAVIES-COLLEY, R. J., PAYNE, G. W. & ELSWIJK, M. V. 2000. Microclimate gradients across a forest edge. New Zealand Journal of Ecology 24:111121.
FISCHER, E. A. & ARAUJO, A. C. 1995. Spatial organization of a bromeliad community in the Atlantic rainforest, south-eastern Brazil. Journal of Tropical Ecology 11:559567.
FREIBERG, M. 1997. Spatial and temporal pattern of temperature and humidity of a tropical premontane rain forest tree in Costa Rica. Selbyana 18:7784.
GARWOOD, N. C. 1983. Seed germination in a seasonal tropical forest in Panama: a community study. Ecological Monographs 53:159181.
GRAHAM, E. A. & ANDRADE, J. L. 2004. Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest. American Journal of Botany 91:699706.
GRIFFITHS, H. & MAXWELL, K. 1999. In memory of C. S. Pittendrigh: does exposure in forest canopies relate to photoprotective strategies in epiphytic bromeliads? Functional Ecology 13:1523.
GRUBB, P. J. 1977. Maintenance of species-richness in plant communities: importance of regeneration niche. Biological Reviews of the Cambridge Philosophical Society 52:107145.
HEGARTY, T. W. 1978. The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: a review. Plant, Cell and Environment 1:101119.
HIETZ, P. & BRIONES, O. 1998. Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305316.
HIETZ, P., AUSSERER, J. & SCHINDLER, G. 2002. Growth, maturation and survival of epiphytic bromeliads in a Mexican humid montane forest. Journal of Tropical Ecology 18:177191.
HOTHORN, T., BRETZ, F. & WESTFALL, P. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50:346363.
HUNT, R. 1982. Plant growth curves – the functional approach to plant growth analysis. Edward Arnold, London. 248 pp.
JOHANSSON, D. 1974. Ecology of vascular epiphytes in West African rain forests. Acta Phytogeographica Suecica 59:1129.
KAHM, M., HASENBRINK, G., LICHTENBERG-FRATÉ, H., LUDWIG, J. & KSCHISCHO, M. 2010. grofit: fitting biological growth curves with R. Journal of Statistical Software 33:121.
KRÖMER, T., KESSLER, M. & GRADSTEIN, S. R. 2007. Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecology 189:261278.
LORENZO, N., MANTUANO, D. G. & MANTOVANI, A. 2010. Comparative leaf ecophysiology and anatomy of seedlings, young and adult individuals of the epiphytic aroid Anthurium scandens (Aubl.) Engl. Environmental and Experimental Botany 68:314322.
MEYER, C. F. J. & ZOTZ, G. 2004. Do growth and survival of aerial roots limit the vertical distribution of hemiepiphytic aroids? Biotropica 36:483491.
PITTENDRIGH, C. S. 1948. The Bromeliad-Anopheles-Malaria complex in Trinidad. I – The bromeliad flora. Evolution 2:5889.
RAMBO, T. R. & NORTH, M. P. 2008. Spatial and temporal variability of canopy microclimate in a Sierra Nevada riparian forest. Northwest Science 82:259268.
SNOW, D. W. 1981. Tropical frugivorous birds and their food plants: a world survey. Biotropica 13:114.
STUNTZ, S., SIMON, U. & ZOTZ, G. 2002. Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. International Journal of Biometeorology 46:5359.
TER STEEGE, H. & CORNELISSEN, J. H. C. 1989. Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21:331339.
TOLEDO-ACEVES, T. & WOLF, J. H. D. 2008. Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas, Mexico. Biotropica 40:246250.
TOLEDO-ACEVES, T., GARCÍA-FRANCO, J. G., LANDERO LOZADA, S., LEÓN MATEOS, M. L. & MACMILLAN, K. 2012. Germination and seedling survivorship of three Tillandsia species in the cloud-forest canopy. Journal of Tropical Ecology 28:423426.
VENABLES, W. N. & RIPLEY, B. D. 2002. Modern applied statistics with S. (Fourth edition). Springer, New York. 495 pp.
WAGNER, S., BADER, M. Y. & ZOTZ, G. (in press). The temperature acclimation potential of tropical bryophytes. Plant Biology. doi:10.1111/plb.12037
WALSH, R. P. D. 1996. Microclimate and hydrology. Pp. 206233 in Richards, P. W. (ed.). The tropical rain forest. Cambridge University Press, Cambridge.
WERNER, F. A., HOMEIER, J., OESKER, M. & BOY, J. 2012. Epiphytic biomass of a tropical montane forest varies with topography. Journal of Tropical Ecology 28:2331.
WICKHAM, H. 2009. ggplot2: elegant graphics for data analysis. Springer, New York. 221 pp.
WINKLER, M., HÜLBER, K. & HIETZ, P. 2005. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest. Annals of Botany 95:10391047.
WORLD METEOROLOGICAL ORGANIZATION. 2008. Guide to meteorological instruments and methods of observation. (Seventh edition). World Meteorological Organization, Geneva.
WRIGHT, S. J., HORLYCK, V., BASSET, Y., BARRIOS, H., BETHANCOURT, A., BOHLMAN, S. A., GILBERT, G. S., GOLDSTEIN, G., GRAHAM, E. A., KITAJIMA, K., LERDAU, M. T., MEINZER, F. C., ØDEGAARD, F., REYNOLDS, D. R., ROUBIK, D. W., SAKAI, S., SAMANIEGO, M., SPARKS, J. P., VAN BAEL, S., WINTER, K. & ZOTZ, G. 2003. Tropical canopy biology program, Republic of Panama. Pp. 137155 in Basset, Y., Horlyck, V. & Wright, S. J. (eds.). Studying forest canopies from above: The International Canopy Crane Network. United Nations Environmental Programme, Smithsonian Tropical Research Institute, New York.
ZOTZ, G. 2004. How prevalent is crassulacean acid metabolism among vascular epiphytes? Oecologia 138:184192.
ZOTZ, G. 2007. Johansson revisited: the spatial structure of epiphyte assemblages. Journal of Vegetation Science 18:123130.
ZOTZ, G. & VOLLRATH, B. 2002. Substrate preferences of epiphytic bromeliads: an experimental approach. Acta Oecologica 23:99102.
ZOTZ, G. & VOLLRATH, B. 2003. The epiphyte vegetation of the palm Socratea exorrhiza – correlations with tree size, tree age and bryophyte cover. Journal of Tropical Ecology 19:8190.
ZOTZ, G., PATIÑO, S. & TYREE, M. T. 1997. Water relations and hydraulic architecture of woody hemiepiphytes. Journal of Experimental Botany 48:18251834.
ZOTZ, G., HIETZ, P. & SCHMIDT, G. 2001. Small plants, large plants – the importance of plant size for the physiological ecology of vascular epiphytes. Journal of Experimental Botany 52:20512056.
ZUUR, A. F., IENO, E. N., WALKER, N. J., SAVELIEV, A. A. & SMITH, G. M. 2009. Mixed effects models and extensions in ecology with R. Springer, New York. 574 pp.


The role of the regeneration niche for the vertical stratification of vascular epiphytes

  • Katrin Wagner (a1), Wiebke Bogusch (a1) and Gerhard Zotz (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed