Skip to main content Accessibility help
×
Home

Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species

  • A. Elizabeth Arnold (a1) and Bettina M. J. Engelbrecht (a2)

Abstract

Drought strongly influences plant phenology, growth and mortality in tropical forests, thereby shaping plant performance, population dynamics and community structure (Bunker & Carson 2005, Condit et al. 1995). Microbial symbionts of plants profoundly influence host water relations (Lösch & Gansert 2002), but are rarely considered in studies of tropical plant physiology. In particular, plant–fungus associations, which are ubiquitous in plant communities and especially common in tropical forests, play important and varied roles in plant water status. Fungal pathogens associated with roots, vascular tissue and foliage may interfere with water uptake and transport, increase rates of foliar transpiration, and induce xylem embolism and tissue death (Agrios 1997). In contrast, rhizosphere mutualists such as ecto- and arbuscular mycorrhizal fungi may benefit hosts by increasing surface area for water uptake, enhancing stomatal regulation of water loss, and increasing root hydraulic conductivity (Auge 2001, Lösch & Gansert 2002).

Copyright

Corresponding author

Corresponding author. Email: arnold@ag.arizona.edu

Keywords

Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species

  • A. Elizabeth Arnold (a1) and Bettina M. J. Engelbrecht (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed