Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-15T19:27:21.868Z Has data issue: false hasContentIssue false

Assemblage of forest communities in subtropical montane forests of western Mexico

Published online by Cambridge University Press:  29 January 2024

Karolina Riaño
Affiliation:
Cátedra Consejo Nacional de Humanidades, Ciencia y Tecnología. Departamento de Ecología y Recursos Naturales, Centro Universitario Costa Sur, Universidad de Guadalajara, Autlán de Navarro Jalisco, México Departamento de Ecología y Recursos Naturales, Centro Universitario Costa Sur, Universidad de Guadalajara, Autlán de Navarro Jalisco, México
Ramón Cuevas*
Affiliation:
Departamento de Ecología y Recursos Naturales, Centro Universitario Costa Sur, Universidad de Guadalajara, Autlán de Navarro Jalisco, México
Susana Zuloaga-Aguilar
Affiliation:
Departamento de Ecología y Recursos Naturales, Centro Universitario Costa Sur, Universidad de Guadalajara, Autlán de Navarro Jalisco, México
Enrique Jardel
Affiliation:
Departamento de Ecología y Recursos Naturales, Centro Universitario Costa Sur, Universidad de Guadalajara, Autlán de Navarro Jalisco, México
Oscar Briones
Affiliation:
Instituto de Ecología A.C. INECOL carretera antigua a Coatepec 351, Xalapa Veracruz, México
Heidi Asbjornsen
Affiliation:
University of New Hampshire, Durham, NH, USA
*
Corresponding author: Ramon Cuevas; Email: ramon.cuevas@academicos.udg.mx

Abstract

Functional diversity indices have been used to differentiate the relative contribution of stochastic and deterministic processes that modulate the assemblage of communities; however, knowledge regarding the relative contribution of assemblage mechanisms in forest communities is scarce. We analysed the assembly mechanisms driving forest assemblages along a topographic gradient at two spatial scales (1000 m2 and 3000 m2) for three different forest types from subtropical mountain forests (pine-oak, mixed pine-broadleaf and broadleaf forest) in western Mexico, using null models of multi-trait indices. The forest structure differed along the topographic gradient. Upper slopes were dominated by Pinus douglasiana with an importance value index (IVI) of 0.8, while 10 and 13 tree species were required in the middle and lower slopes, respectively, to reach the same IVI. The results support the idea that the subtropical montane forest of western Mexico is a mosaic of communities, when analysed at a scale of 1000 m2 the forest assembly was mainly explained by stochastic processes, while analysis at the scale of 3000 m2 showed that functional convergence of species were the main mechanisms of the assemblage of the pine-oak forest communities due to an abiotic stressful environment.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderegg, LDL (2023) Why can’t we predict traits from the environment? New Phytologist 237, 19982004.CrossRefGoogle ScholarPubMed
Beckman, NG, Aslan, CE and Rogers, HS (2020) Introduction to the special issue: the role of seed dispersal in plant populations: perspectives and advances in a changing world. AoB Plants 12, plaa010.CrossRefGoogle Scholar
Bhaskar, R, Dawson, TE and Balvanera, P (2014) Community assembly and functional diversity along succession post-management. Functional Ecology 28, 12561265.CrossRefGoogle Scholar
Carboni, M, Münkemüller, T, Gallien, L, Lavergne, S, Acosta, A and Thuiller, W (2013) Darwin’s naturalization hypothesis: scale matters in coastal plant communities. Ecography 36, 560568.CrossRefGoogle ScholarPubMed
Castillo, V (2019) Distribución del carbono orgánico del suelo a través de un gradiente topográfico. Bachelor Thesis, Universidad de Guadalajara.Google Scholar
Carmona, CP, De Bello, F, Mason, NW and Lepš, J (2016) Traits without borders: integrating functional diversity across scales. Trends in Ecology & Evolution 31, 382394.CrossRefGoogle Scholar
Cavender-Bares, J, Keen, A and Miles, B (2006) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87, S109S122.CrossRefGoogle ScholarPubMed
Corlett, RT and Hughes, AC (2015) Subtropical forests. In Peh, Kelvin S-H, Corlett, RT, Bergeron, Y (eds), Routledge Handbook of Forest Ecology. London: Routledge, pp. 6271.Google Scholar
Cornelissen, JHC, Lavorel, S, Garnier, E, Diaz, S, Buchmann, N, Gurvich, DE, Reich, PB, ter Steege, H, Morgan, HD, van der Heijden, MGA, Pausas, JG and Poorter, H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51, 335380.CrossRefGoogle Scholar
Cornwell, WK and Ackerly, DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79, 109126.CrossRefGoogle Scholar
Cuevas, GR, Núñez, LN and Sánchez, REV (2021) Flora arbórea de la Estación Científica Las Joyas y áreas adyacentes, Sierra de Manantlán, México. Autlán de Navarro, Jalisco: Universidad de Guadalajara.Google Scholar
Díaz, S, Kattge, J, Cornelissen, JH, Wright, IJ, Lavorel, S, Dray, S, Reu, B, Kleyer, M, Wirth, C, Garnier, E, Bönisch, G, Westoby, M, Poorter, H, Reich, PB, Moles, AT, Dickie, J, Gillison, AN, Zanne, AE, Chave, J, Wright, SJ, Sheremet’ev, SN, Jactel, H, Baraloto, C, Cerabolini, B, Pierce, S, Shipley, B, Kirkup, D, Casanoves, F, Joswig, JS, Günther, A, Falczuk, V, Rüger, N, Mahecha, MD and Gorné, LD (2016) The global spectrum of plant form and function. Nature 529, 167171.CrossRefGoogle ScholarPubMed
Engelbrecht, BM, Comita, LS, Condit, R, Kursar, TA, Tyree, MT, Turner, BL and Hubbell, SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 8082.CrossRefGoogle ScholarPubMed
Galicia, L, Potvin, C and Messier, C (2015) Maintaining the high diversity of pine and oak species in Mexican temperate forests: a new management approach combining functional zoning and ecosystem adaptability. Canadian Journal of Forest Research 45, 13581368.CrossRefGoogle Scholar
Götzenberger, L, Botta-Dukát, Z, Lepš, J, Pärtel, M, Zobel, M and de Bello, F (2016) Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models. Journal of Vegetation Science 27, 12751287.CrossRefGoogle Scholar
HilleRisLambers, J, Adler, PB, Harpole, WS, Levine, JM and Mayfield, MM (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43, 227248.CrossRefGoogle Scholar
Hubbell, SP (2001) The unified neutral theory of biodiversity and biogeography (MPB-32). In The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Princeton, NJ: Princeton University Press.Google Scholar
Jardel-Peláez, EJ (2018) El relato contado por los bosques: ecología histórica y manejo forestal en la Sierra de Manantlán. En García-Corzo, RV (ed), Ciencia, Sociedad y Medio Ambiente en la Historia. Centro Universitario de los Lagos. Lagos de Moreno, Jalisco: Universidad de Guadalajara, pp. 207246.Google Scholar
Jardel-Peláez, EJ, Ezcurra, E, Cuevas-Guzmán, R, Santiago-Pérez, AL and Cruz-Cerda, P (2004b) Vegetación y patrones del paisaje. En Cuevas, GR & Jardel, EJP (eds), Flora y vegetación de la Estación Científica Las Joyas. Autlán de Navarro, Jalisco: Universidad de Guadalajara, pp. 65117.Google Scholar
Jardel-Peláez, EJ, Martínez-Rivera, LM, Ramírez, RJM and Partida-Lara, D (2004a) Condiciones físico-geográficas de Las Joyas y sus alrededores. En Cuevas, GR and Jardel, EJP (eds), Flora y vegetación de la Estación Científica Las Joyas. Autlán de Navarro, Jalisco: Universidad de Guadalajara, pp. 3963.Google Scholar
Kembel, SW, Cowan, PD, Helmus, MR, Cornwell, WK, Morlon, H, Ackerly, DD, Blomberg, SP and Webb, CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 14631464.CrossRefGoogle ScholarPubMed
Klein, T (2014) The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology 28, 13131320.CrossRefGoogle Scholar
Kraft, NJ and Ackerly, DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80, 401422.CrossRefGoogle Scholar
Laliberté, E, Legendre, P, Shipley, B and Laliberté, ME (2014) Measuring functional diversity from multiple traits, and other tools for functional ecology. R-Package FD.Google Scholar
Laughlin, DC (2014) Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters 17, 771784.CrossRefGoogle ScholarPubMed
Leibold, MA, Holyoak, M, Mouquet, N, Amarasekare, P, Chase, JM, Hoopes, MF, Holt, RD, Shurin, JB, Law, R, Tilman, D, Loreau, M and Gonzalez, A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7, 601613.CrossRefGoogle Scholar
Liu, X and Wang, H (2018) Contrasting patterns and drivers in taxonomic versus functional diversity, and community assembly of aquatic plants in subtropical lakes. Biodiversity and Conservation 27, 31033118.CrossRefGoogle Scholar
Macarthur, R and Levins, R (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101, 377385.CrossRefGoogle Scholar
Mason, NW, de Bello, F, Mouillot, D, Pavoine, S and Dray, S (2013) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science 24, 794806.CrossRefGoogle Scholar
Mason, NW, Lanoiselée, C, Mouillot, D, Irz, P and Argillier, C (2007) Functional characters combined with null models reveal inconsistency in mechanisms of species turnover in lacustrine fish communities. Oecologia 153, 441452.CrossRefGoogle ScholarPubMed
Mason, NW, Mouillot, D, Lee, WG and Wilson, JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112118.CrossRefGoogle Scholar
Maynard, DS, Bialic-Murphy, L, Zohner, CM, Averill, C, van den Hoogen, J, Ma, H, Mo, L, Smith, GR, Aubin, I, Berenguer, E, Boonman, CCF, Catford, JA, Cerabolini, BEL, Dias, AS, González-Melo, A, Hietz, P, Lusk, CH, Mori, AS, Niinemets, Ü, Pillar, VD, Pinho, BX, Rosell, JA, Schurr, FM, Sheremetev, SN, da Silva, AC, Sosinski, Ê, van Bodegom, PM, Weiher, E, Bönisch, G, Kattge, J and Crowther, TW (2022) Global relationships in tree functional traits. Nature Communications 13, 3185.CrossRefGoogle ScholarPubMed
McCune, B and Grace, JB (2002) Analysis of Ecological Communities. Gleneden Beach: MjM Software Design.Google Scholar
Mouchet, MA, Villéger, S, Mason, NW and Mouillot, D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24, 867876.CrossRefGoogle Scholar
Münkemüller, T, Gallien, L, Pollock, LJ, Barros, C, Carboni, M, Chalmandrier, L, Mazel, F, Mokany, K, Roquet, C, Smyčka, J, Talluto, MV and Thuiller, W (2020) Dos and don’ts when inferring assembly rules from diversity patterns. Global Ecology and Biogeography 29, 12121229.CrossRefGoogle Scholar
Norden, N (2014) Del porqué la regeneración natural es tan importante para la coexistencia de especies en los bosques tropicales. Colombia Forestal 17, 247261.CrossRefGoogle Scholar
Ogle, D and Ogle, MD (2017) Package ‘FSA’. CRAN Repos, 1206. https://github.com/droglenc/FSA.Google Scholar
Oliver, TH, Heard, MS, Isaac, NJ, Roy, DB, Procter, D, Eigenbrod, F, Freckleton, R, Hector, A, Orme, CDL, Petchey, OL, Proença, V, Raffaelli, D, Suttle, KB, Mace, GM, Martín-López, B, Woodcock, BA and Bullock, JM (2015) Biodiversity and resilience of ecosystem functions. Trends in Ecology & Evolution 30, 673684.CrossRefGoogle ScholarPubMed
Ortega-Martínez, IJ, Moreno, CE, Rios-Díaz, CL, Arellano, L, Rosas, F and Castellanos, I (2020) Assembly mechanisms of dung beetles in temperate forests and grazing pastures. Scientific Reports 10, 110.CrossRefGoogle ScholarPubMed
Perez-Harguindeguy, N, Diaz, S, Garnier, E, Lavorel, S, Poorter, H, Jaureguiberry, P and Cornelissen, JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167234.CrossRefGoogle Scholar
Poorter, L (2009) Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist 181, 890900.CrossRefGoogle ScholarPubMed
Quintero-Gradilla, SD, Cuevas-Guzmán, R, García-Oliva, F, Jardel-Peláez, EJ and Martínez-Yrizar, A (2020) Post-fire recovery of ecosystem carbon pools in a tropical mixed pine-hardwood forest. Forest Systems 29, 113.CrossRefGoogle Scholar
R Core Team (2021) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rosenfeld, JS (2002) Functional redundancy in ecology and conservation. Oikos 98, 156162.Google Scholar
Rost, BJ, Jardel-Peláez, EJ, Bas Lay, JM, Pons Ferran, P, Loera, J, Vargas-Jaramillo, S and Santana, E (2015) The role of frugivorous birds and bats on the colonization of burned areas by cloud forest in western Mexico. © Animal Biodiversity and Conservation 38, 175182.CrossRefGoogle Scholar
Rzedowski, J (1978) Vegetación de México. Limusa: México DF, México.Google Scholar
Saldaña-Acosta, MA (2001) Dinamica y patrones de establecimiento de especies de bosque mesofilo de montana en la Sierra de Manantlan, Jalisco (Doctoral dissertation, Thesis of Master. Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Division de Estudios de Postgrado, Mexico, DF).Google Scholar
Saldaña-Acosta, MA, Meave, JA, Paz, H, Sanchez-Velasquez, LR, Villasenor, JL and Martínez-Ramos, M (2008) Variation of functional traits in trees from a biogeographically complex Mexican cloud forest. Acta Oecologica 34, 111121.CrossRefGoogle Scholar
Sanaphre-Villanueva, L, Dupuy, J, Andrade, J, Reyes-García, C, Paz, H and Jackson, P (2016) Functional diversity of small and large trees along secondary succession in a tropical dry forest. Forests 7, 163.CrossRefGoogle Scholar
Silvertown, J, Araya, Y and Gowing, D (2015) Hydrological niches in terrestrial plant communities: a review. Journal of Ecology 103, 93108.CrossRefGoogle Scholar
Spasojevic, MJ and Suding, KN (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology 100, 652661.CrossRefGoogle Scholar
Suárez-Castro, AF, Raymundo, M, Bimler, M and Mayfield, MM (2022) Using multi-scale spatially explicit frameworks to understand the relationship between functional diversity and species richness. Ecography 2022, e05844.CrossRefGoogle Scholar
Swenson, NG (2014) Functional and Phylogenetic Ecology in R. New York: Springer.CrossRefGoogle Scholar
Trisos, CH, Petchey, OL and Tobias, JA (2014) Unraveling the interplay of community assembly processes acting on multiple niche axes across spatial scales. The American Naturalist 184, 593608.CrossRefGoogle ScholarPubMed
Villeger, S, Mason, NW and Mouillot, D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 22902301.CrossRefGoogle ScholarPubMed
Violle, C, Navas, ML, Vile, D, Kazakou, E, Fortunel, C, Hummel, I and Garnier, E (2007) Let the concept of trait be functional! Oikos 116, 882892.CrossRefGoogle Scholar
Wright, IJ, Reich, PB, Westoby, M, Ackerly, DD, Baruch, Z, Bongers, F, Cavender-Bares, J, Chapin, T, Cornelissen, JHC, Diemer, M, Flexas, J, Garnier, E, Groom, PK, Gulias, J, Hikosaka, K, Lamont, BB, Lee, T, Lee, W, Lusk, C, Midgley, JJ, Navas, M-L, Niinemets, Ü, Oleksyn, J, Osada, N, Poorter, H, Poot, P, Prior, L, Pyankov, VI, Roumet, C, Thomas, SC, Tjoelker, MG, Veneklaas, EJ and Villar, R (2004) The worldwide leaf economics spectrum. Nature 428, 821827.CrossRefGoogle ScholarPubMed
Zakharova, L, Meyer, KM and Seifan, M (2019) Trait-based modelling in ecology: a review of two decades of research. Ecological Modelling 407, 108703.CrossRefGoogle Scholar
Zhang, H, Chen, HY, Lian, J, John, R, Ronghua, LI, Liu, H, Ye, W, Berninger, F and Ye, Q (2018) Using functional trait diversity patterns to disentangle the scale-dependent ecological processes in a subtropical forest. Functional Ecology 32, 13791389.CrossRefGoogle Scholar
Zuloaga-Aguilar, S, Orozco-Segovia, A, Briones, O and Pelaez, EJ (2016) Response of soil seed bank to a prescribed burning in a subtropical pine–oak forest. International Journal of Wildland Fire 25, 946954.CrossRefGoogle Scholar
Supplementary material: File

Riaño et al. supplementary material

Riaño et al. supplementary material

Download Riaño et al. supplementary material(File)
File 1.9 MB