Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-17T08:51:47.230Z Has data issue: false hasContentIssue false

Overlap in avian communities produces unimodal richness peaks on Bornean mountains

Published online by Cambridge University Press:  21 March 2018

Ryan C. Burner*
Affiliation:
Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
Alison R. Styring
Affiliation:
The Evergreen State College, Olympia, Washington 98505, USA
Chandradewana Boer
Affiliation:
Wildlife Ecology and Biodiversity Laboratory, Forestry Faculty, Mulawarman University, East Kalimantan, Indonesia
Frederick H. Sheldon
Affiliation:
Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
*
*Corresponding author. Email: ryan.c.burner@gmail.com

Abstract:

Altitudinal gradients provide tractable, replicated systems in which to study changes in species richness and community composition over relatively short distances. Previously, richness was often assumed to follow a monotonic decline with altitude, but recent meta-analyses show that more complex patterns, including mid-altitude richness peaks, are also prevalent in birds. In this study, we used point counts to survey birds at multiple altitudes on three mountains on the island of Borneo in Sundaland, an area for which quantitative analyses of avian altitudinal distribution are unavailable. In total we conducted 1088 point counts and collected associated habitat data at 527 locations to estimate species richness by altitude on Mt Mulu (2376 m), Mt Pueh (1550 m) and Mt Topap Oso (1450 m). On Mulu, the only mountain with an intact habitat gradient, bird species richness peaks at 600 m. Richness appeared to peak at 600 m on Totap Oso as well, but on Pueh it peaked several hundred metres higher. The richness peak on Mulu differs from that predicted by null models and is instead caused by the overlap of distinct lowland and montane avifaunas, supporting the faunal overlap hypothesis. This finding provides further evidence that a lack of coincidence between peak turnover and peak richness is not sufficient evidence to rule out faunal overlap as a causal factor.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BANKS, E. 1952. Mammals and birds from the Maga mountains in Borneo. Bulletin of the Raffles Museum 24:160163.Google Scholar
BASELGA, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19:134143.CrossRefGoogle Scholar
BECK, J. & CHEY, V. K. 2008. Explaining the elevational diversity pattern of geometrid moths from Borneo: a test of five hypotheses. Journal of Biogeography 35:14521464.CrossRefGoogle Scholar
BECK, J., KITCHING, I. J. & LINSENMAIR, K. E. 2006. Effects of habitat disturbance can be subtle yet significant: biodiversity of hawkmoth-assemblages (Lepidoptera: Sphingidae) in Southeast-Asia. Pp. 451472 in Hawksworth, D. L. & Bull, A. T. (eds). Arthropod diversity and conservation. Springer, Dordrecht.CrossRefGoogle Scholar
BECK, J., MCCAIN, C. M., AXMACHER, J. C., ASHTON, L. A., BÄRTSCHI, F., BREHM, G., CHOI, S. W., CIZEK, O., COLWELL, R. K. & FIEDLER, K. 2017. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta‐study on geometrid moths. Global Ecology and Biogeography 26:412424.CrossRefGoogle Scholar
BRUIJNZEEL, L., WATERLOO, M., PROCTOR, J., KUITERS, A. & KOTTERINK, B. 1993. Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. Journal of Ecology 81:145167.Google Scholar
BURNER, R. C., CHUA, V. L., BRADY, M. L., VAN ELS, P., STEINHOFF, P. O., RAHMAN, M. A. & SHELDON, F. H. 2016. An ornithological survey of Gunung Mulu National Park, Sarawak, Malaysian Borneo. The Wilson Journal of Ornithology 128:242254.CrossRefGoogle Scholar
CADENA, C. D. & LOISELLE, B. A. 2007. Limits to elevational distributions in two species of emberizine finches: disentangling the role of interspecific competition, autoecology, and geographic variation in the environment. Ecography 30:491504.CrossRefGoogle Scholar
CHUA, V. L., SMITH, B. T., BURNER, R. C., RAHMAN, M. A., LAKIM, M., PRAWIRADILAGA, D. M., MOYLE, R. G. & SHELDON, F. H. 2017. Evolutionary and ecological forces influencing population diversification in Bornean montane passerines. Molecular Phylogenetics and Evolution 113:139149.CrossRefGoogle ScholarPubMed
CLEARY, D. F., BOYLE, T. J., SETYAWATI, T., ANGGRAENI, C. D., LOON, E. E. V. & MENKEN, S. B. 2007. Bird species and traits associated with logged and unlogged forest in Borneo. Ecological Applications 17:11841197.CrossRefGoogle ScholarPubMed
COLWELL, R. K., RAHBEK, C. & GOTELLI, N. J. 2005. The mid‐domain effect: there's a baby in the bathwater. American Naturalist 166:E149–E154.CrossRefGoogle Scholar
DE BRUYN, M., STELBRINK, B., MORLEY, R. J., HALL, R., CARVALHO, G. R., CANNON, C. H., VAN DEN BERGH, G., MEIJAARD, E., METCALFE, I. & BOITANI, L. 2014. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Systematic Biology 63:879901.CrossRefGoogle ScholarPubMed
EDWARDS, D. P., LARSEN, T. H., DOCHERTY, T. D., ANSELL, F. A., HSU, W. W., DERHÉ, M. A., HAMER, K. C. & WILCOVE, D. S. 2011. Degraded lands worth protecting: the biological importance of Southeast Asia's repeatedly logged forests. Proceedings of the Royal Society of London B: Biological Sciences 278:8290.Google ScholarPubMed
FJELDSÅ, J. & RAHBEK, C. 2012. The role of mountains in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics 43:249265.CrossRefGoogle Scholar
GAVEAU, D. L., SLOAN, S., MOLIDENA, E., YAEN, H., SHEIL, D., ABRAM, N. K., ANCRENAZ, M., NASI, R., QUINONES, M. & WIELAARD, N. 2014. Four decades of forest persistence, clearance and logging on Borneo. PLoS ONE 9:e101654.CrossRefGoogle ScholarPubMed
GOSLEE, S. C. & URBAN, D. L. 2007. The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software 22 (7):119.CrossRefGoogle Scholar
GRYTNES, J. A., BEAMAN, J. H., ROMDAL, T. S. & RAHBEK, C. 2008. The mid‐domain effect matters: simulation analyses of range‐size distribution data from Mount Kinabalu, Borneo. Journal of Biogeography 35:21382147.CrossRefGoogle Scholar
HARRIS, J. B. C., YONG, D. L., SHELDON, F. H., BOYCE, A. J., EATON, J. A., BERNARD, H., BIUN, A., LANGEVIN, A., MARTIN, T. E. & WEI, D. 2012. Using diverse data sources to detect elevational range changes of birds on Mount Kinabalu, Malaysian Borneo. Raffles Bulletin of Zoology 25:197247.Google Scholar
HASELMAYER, J. & QUINN, J. S. 2000. A comparison of point counts and sound recording as bird survey methods in Amazonian southeast Peru. The Condor 102:887893.Google Scholar
HERZOG, S. K., KESSLER, M. & BACH, K. 2005. The elevational gradient in Andean bird species richness at the local scale: a foothill peak and a high‐elevation plateau. Ecography 28:209222.CrossRefGoogle Scholar
JANKOWSKI, J. E., LONDOÑO, G. A., ROBINSON, S. K. & CHAPPELL, M. A. 2013. Exploring the role of physiology and biotic interactions in determining elevational ranges of tropical animals. Ecography 36:112.Google Scholar
JOHNS, A. G. 1996. Bird population persistence in Sabahan logging concessions. Biological Conservation 75:310.Google Scholar
LAMBERT, F. 1992. The consequences of selective logging for Bornean lowland forest birds. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 335:443457.Google Scholar
LOMOLINO, M. 2001. Elevation gradients of species‐density: historical and prospective views. Global Ecology and Biogeography 10:313.CrossRefGoogle Scholar
MACKENZIE, D. I., NICHOLS, J. D., LACHMAN, G. B., DROEGE, S., ROYLE, A. J. & LANGTIMM, C. A. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:22482255.CrossRefGoogle Scholar
MACKINNON, J. R. & PHILLIPPS, K. 1993. A field guide to the birds of Borneo, Sumatra, Java and Bali. Oxford University Press, Oxford. 692 pp.CrossRefGoogle Scholar
MALHI, Y., SILMAN, M., SALINAS, N., BUSH, M., MEIR, P. & SAATCHI, S. 2010. Introduction: Elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology 16:31713175.CrossRefGoogle Scholar
MANTHEY, J. D., MOYLE, R. G., GAWIN, D. F., RAHMAN, M. A., RAMJI, M. F. S. & SHELDON, F. H. 2017. Genomic phylogeography of the endemic Mountain Black‐eye of Borneo (Chlorocharis emiliae): montane and lowland populations differ in patterns of Pleistocene diversification. Journal of Biogeography 44:22722283.CrossRefGoogle Scholar
MCCAIN, C. M. 2005. Elevational gradients in diversity of small mammals. Ecology 86:366372.CrossRefGoogle Scholar
MCCAIN, C. M. 2007. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography 16:113.CrossRefGoogle Scholar
MCCAIN, C. M. 2009. Global analysis of bird elevational diversity. Global Ecology and Biogeography 18:346360.Google Scholar
MCCAIN, C. M. 2010. Global analysis of reptile elevational diversity. Global Ecology and Biogeography 19:541553.CrossRefGoogle Scholar
MCCAIN, C. M. & BECK, J. 2015. Species turnover in vertebrate communities along elevational gradients is idiosyncratic and unrelated to species richness. Global Ecology and Biogeography 25:299310.Google Scholar
NOR, S. 2001. Elevational diversity patterns of small mammals on Mount Kinabalu, Sabah, Malaysia. Global Ecology and Biogeography 10:4162.Google Scholar
RAHBEK, C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18:200205.CrossRefGoogle Scholar
RAHBEK, C. 2005. The role of spatial scale and the perception of large‐scale species‐richness patterns. Ecology Letters 8:224239.CrossRefGoogle Scholar
RAMJI, M. F. S., MIN, P. Y., RAHMAN, M. R. A. & RAHMAN, M. A. 2012. Rediscovery of the enigmatic Mountain Blackeye, Chlorocharis emiliae Sharpe, 1888 (Passeriformes: Zosteropidae) from Mount Pueh, Sarawak. Tropical Natural History 12:261266.Google Scholar
ROHDE, K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514527.Google Scholar
ROMDAL, T. S. & RAHBEK, C. 2009. Elevational zonation of afrotropical forest bird communities along a homogeneous forest gradient. Journal of Biogeography 36:327336.CrossRefGoogle Scholar
SHELDON, F. H., STYRING, A. & HOSNER, P. A. 2010. Bird species richness in a Bornean exotic tree plantation: a long-term perspective. Biological Conservation 143:399407.CrossRefGoogle Scholar
SHELDON, F. H., LIM, H. C. & MOYLE, R. G. 2015. Return to the Malay Archipelago: the biogeography of Sundaic rainforest birds. Journal of Ornithology 156:91113.CrossRefGoogle Scholar
SMYTHIES, B. E. 1999. The birds of Borneo. (Fourth edition). Natural History Publications (Borneo), Kota Kinabalu. 853 pp.Google Scholar
TERBORGH, J. & WESKE, J. S. 1975. The role of competition in the distribution of Andean birds. Ecology 56:562576.CrossRefGoogle Scholar
WILCOVE, D. S., GIAM, X., EDWARDS, D. P., FISHER, B. & KOH, L. P. 2013. Navjot's nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends in Ecology and Evolution 28:531540.Google Scholar