Skip to main content Accessibility help

The δ15N signature of the detrital food web tracks a landscape-scale soil phosphorus gradient in a Costa Rican lowland tropical rain forest

  • Ching-Yu Huang (a1), Katherine L. Tully (a2), Deborah A. Clark (a3), Steven F. Oberbauer (a4) and Terrence P. McGlynn (a1)...


In this study, we investigated whether landscape-scale variation of soil P accounts for 13C and 15N composition of detrital invertebrates in a lowland tropical rain forest in Costa Rica. The top 10-cm soil, leaf-litter samples and plant foliage were collected among 18 plots representing a three-fold soil P gradient during 2007–2009. Body tissue of litter invertebrates (extracted from leaf-litter samples) along with soil, leaf litter and green foliage were analysed for total C, total N, δ13C and δ15N values. Differences in δ13C and δ15N signatures across plots and relative trophic distances of detrital food webs (Δ δ15N), and their variation with soil P gradient were evaluated. We found soil P gradient had a significantly positive correlation with δ15N of Asterogyne martiana foliage, leaf litter, collembolans and oribatid mites. The δ15N of the collembolans and pseudoscorpions positively correlated to leaf-litter δ15N. Δ δ15N between the trophic levels remained consistent across the soil P gradient. Higher δ15N in the collembolans and oribatid mites might be derived from their consumption on 15N-enriched decayed debris or fungal hyphae growing on it. It suggests that fine-scale soil P variation can affect trophic dynamics of detrital arthropods via regulation of microbial community and nutrient dynamics.


Corresponding author

1Corresponding author. Email:


Hide All
ADAMS, T. S. & STERNER, R. W. 2000. The effect of dietary nitrogen content on trophic level 15N enrichment. Limnology and Oceanography 45:601607.
ALBERS, D., SCHAEFER, M. & SCHEU, S. 2006. Incorporation of plant carbon into the soil animal food web of an arable system. Ecology 87:235245.
BEARE, M. H., PARMELEE, R. W., HENDRIX, P. F., CHENG, W., COLEMAN, D. C. & CROSSLEY, D. A. 1992. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecological Monographs 62:569591.
BESTELMEYER, B. T., AGOSTI, D., ALONSO, L. E., BRANDÃ, C. R. F., BROWN, W. L., DELABIE, J. H. C. & SILVESTRE, R. 2000. Field techniques for the study of ground-dwelling ants: an overview, description and evaluation. Pp. 122144 in Agosti, D., Majer, J., Alonso, L. E. & Schultz, T. (eds.). Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington DC.
CLARK, D. B. & CLARK, D. A. 2000. Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management 137:185198.
CLARK, D. B., PALMER, M. W. & CLARK, D. A. 1999. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80:26622675.
CLARKSON, B. R., SCHIPPER, L. A., MOYERSOEN, B. & SILVESTER, W. B. 2005. Foliar 15N natural abundance indicates phosphorus limitation of bog species. Oecologia 144:550557.
CLEVELAND, C. C., NEFF, J. C., TOWNSEND, A. R. & HOOD, E. 2004. Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystem 7:275285.
CLEVELAND, C. C., TOWNSEND, A. R., TAYLOR, P., ALVAREZ-CLARE, S., BUSTAMANTE, M. M. C., CHUYONG, G., DOBROWSKI, S. Z., GRIERSON, P., HARMS, K. E., HOULTON, B. Z., MARKLEIN, A., PARTON, W., PORDER, S., REED, S. C., SIERRA, C. A., SILVER, W. L., TANNER, E. V. J. & WIEDER, W. R. 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters 14:939947.
DAVIDSON, D. W., COOK, S. C., SNELLING, R. R. & CHUA, T. H. 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969972.
DENIRO, M. J. & EPSTEIN, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495506.
DENIRO, M. J. & EPSTEIN, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45:341351.
ESPELETA, J. F. & CLARK, D. A. 2007. Multi-scale variation in fine-root biomass in a tropical rain forest: a seven-year study. Ecological Monographs 77:377404.
FISHER, B. L. 1999. Improving inventory efficiency: a case study of leaf-litter ant diversity in Madagascar. Ecological Applications 9:714731.
GONZÁLEZ, G. & SEASTEDT, T. R. 2001. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955964.
HENEGHAN, L., COLEMAN, D. C., ZOU, X., CROSSLEY, D. A. & HAINES, B. L. 1999. Soil microarthropod contributions to decomposition dynamics: tropical–temperate comparisons of a single substrate. Ecology 80:18731882.
HÄTTENSCHWILER, S. & JØRGENSEN, H. B. 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology 98:754763.
HAUBERT, D., LANGEL, R., SCHEU, S. & RUESS, L. 2005. Effects of food quality, starvation and life stage on stable isotope fractionation in Collembola. Pedobiologia 49:229237.
HIDAKA, A. & KITAYAMA, K. 2011. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo. Journal of Ecology 99:849857.
HOBBIE, E. A., MACKO, S. A. & SHUGART, H. H. 1999. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353360.
HYODO, F., MATSUMOTO, T., TAKEMATSU, Y., KAMOI, T., FUKUDA, D., NAKAGAWA, M. & ITIOKA, T. 2010. The structure of a food web in a tropical rain forest in Malaysia based on carbon and nitrogen stable isotope ratios. Journal of Tropical Ecology 26:205214.
JENNINGS, S., RENONES, O., MORALES-NIN, B., POLUNIN, N. V. C., MORANTA, J. & COLL, J. 1997. Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways. Marine Ecology Progress Series 146:109116.
KASPARI, M., GARCIA, M. N., HARMS, K. E., SANTANA, M., WRIGHT, S. J. & YAVITT, J. B. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters 11:3543.
KLEBER, M., SCHWENDENMANN, L., VELDKAMP, E., ROBNER, J. & JAHN, R. 2007. Halloysite versus gibbsite: silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica. Geoderma 138:111.
MCCUTCHAN, J. H. J., LEWIS, W. M. J., KENDALL, C. & MCGRATH, C. C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378390.
MCDADE, L. A., BAWA, K. S., HESPENHEIDE, H. A. & HARTSHORN, G. S. 1994. La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago. 493 pp.
MCGLYNN, T. P., DUNN, R. R., WOOD, T. E., LAWRENCE, D. & CLARK, D. A. 2007. Phosphorus limits tropical rain forest litter fauna. Biotropica 39:5053.
MCGLYNN, T. P., CHOI, H. K., MATTINGLY, S. T., UPSHAW, S., POIRSON, E. K. & BETZELBERGER, J. 2009. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape. BMC Ecology 9:2329.
MCKEE, K. L., FELLER, I. C., POPP, M. & WANEK, W. 2002. Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 84:10651075.
MCNABB, D. M., HALAJ, J. & WISE, D. H. 2001. Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. Pedobiologia 45:289297.
MELILLO, J. M., ABER, J. D., LINKINS, A. E., RICCA, A., FRY, B. & NADELHOFFER, K. J. 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil 115:189198.
MINAGAWA, M. & WADA, E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between delta 15N and animal age. Geochimica et Cosmochimica Acta 48:11351140.
NADELHOFFER, K. J. & FRY, B. 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of American Journal 52:16331640.
POLLIERER, M. M., LANGEL, R., KORNER, C., MARAUN, M. & SCHEU, S. 2007. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecology Letters 10:729736.
POLLIERER, M. M., LANGEL, R., SCHEU, S. & MARAUN, M. 2009. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biology and Biochemistry 41:12211226.
PONSARD, S. & ARDITI, R. 2000. What can stable isotopes (15N and 13C) tell about the food web of soil macro-invertebrates? Ecology 81:852864.
POST, D. M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703718.
POWERS, J. S., MONTGOMERY, R. A., ADAIR, E. C., BREARLEY, F. Q., DEWALT, S. J., CASTANHO, C. T., CHAVE, J., DEINERT, E., GANZHORN, J. U., GILBERT, M. E., GONZÁLEZ-ITURBE, J. A., BUNYAVEJCHEWIN, S., GRAU, H. R., HARMS, K. E., HIREMATH, A., IRIARTE-VIVAR, S., MANZANE, E., DE OLIVERIRA, A. A., POORTER, L., RAMANAMANJATO, J.-B., SALK, C., VARELA, A., WEIBLEN, G. D. & LERDAU, M. T. 2009. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology 97:801811.
ROBBINS, C. T., FELICETTI, L. A. & SPONDEIMER, M. 2005. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144:534540.
RUF, A., KUZYAKOV, Y. & LOPATOVSKAYA, O. 2006. Carbon fluxes in soil food webs of increasing complexity revealed by 14C labelling and 13C natural abundance. Soil Biology and Biochemistry 38:23902400.
SANFORD, R. L., PAABY, P., LUVALL, J. C. & PHILLIPS, E. 1994. The La Selva ecosystem: climate, geomorphology, and aquatic systems. Pp. 1933 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva: Ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago.
SCHEU, S. & FALCA, M. 2000. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123:285296.
SCHMIDT, O., CURRY, J. P., DYCKMANS, J., ROTA, E. & SCRIMGEOUR, C. M. 2004. Dual stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources. Pedobiologia 48:171180.
SCHNEIDER, K., MIGGE, S., NORTON, R. A., SCHEU, S., LANGEL, R., REINEKING, A. & MARAUN, M. 2004. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biology and Biochemistry 36:17691774.
SCHWENDENMANN, L., VELDKAMP, E., BRENES, T., O'BRIEN, J. J. & MACKENSEN, J. 2003. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry 64:111128.
SOLLINS, P., SANCHO, M. F., MATA, C. R. & SANFORD, R. L. 1994. Soils and soil process research. Pp. 3453 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva: Ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago.
STERNER, R. W. & ELSER, J. J. 2002. Ecological stoichiometry. Princeton University Press, Princeton. 584 pp.
THOMAS, C. J. & CAHOON, L. B. 1993. Stable isotope analyses differentiate between different trophic pathways supporting rocky-reef fishes. Marine Ecology Progress Series 95:1924.
TIUNOV, A. V. 2007. Stable isotopes of carbon and nitrogen in soil ecological studies. Biology Bulletin 34:395407.
TOWNSEND, A. R., CLEVELAND, C. C., HOULTON, B. Z., ALDEN, C. B. & WHITE, J. W. C. 2011. Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment 9:917.
WEBB, S. C., HEDGEES, R. E. M. & SIMPSON, S. J. 1998. Diet quality influences the delta13C and delta15N of locusts and their biochemical components. Journal of Experimental Biology 210:29032911.


The δ15N signature of the detrital food web tracks a landscape-scale soil phosphorus gradient in a Costa Rican lowland tropical rain forest

  • Ching-Yu Huang (a1), Katherine L. Tully (a2), Deborah A. Clark (a3), Steven F. Oberbauer (a4) and Terrence P. McGlynn (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed