Skip to main content Accessibility help
×
Home

Zinc and cadmium absorption in the symbiotic anemone Anemonia viridis and the non-symbiotic anemone Actinia equina

  • A. D. Harland (a1), G. W. Bryan (a2) and B. E. Brown (a1)

Extract

Field and experimental observations on sea anemones (Actinaria) Ammonia viridis (Forskål) and Actinia equina (L.) indicated that in both species body zinc concentrations usually ranged between 100 and 200 ug (g dry wt)1 in waters containing up to 200 μg I1 of the metal. At higher dissolved concentrations, as observed in Restronguet Creek, A. equina exhibited only slightly enhanced tissue levels. However, in the laboratory, zinc levels in Anemonia viridis increased markedly at sea-water concentrations exceeding 200 μg I”1. Studies on the uptake of 65Zn-labelled zinc showed that, when the sea-water concentration was increased from 2 to 52 μg 11, both species absorbed the metal and new equilibria appeared to be reached in about a week. At equilibrium, the concentration of zinc in Actinia equina had risen by up to 11%, and in Anemon ia viridis, by up to 28%. About one third of the difference between the amounts absorbed by the two species may be accounted for by zinc accumulated in the symbiotic algae (zooxanthellae) of A. viridis. Short-term (12 h) experiments showed that, although A. viridis absorbed a significant amount of labelled zinc when the concentration increased from 2 to 52 μg I1, uptake was not much greater when the concentration increased from 2 to 202 μg I1. It is postulated that, up to a sea-water concentration of 202 μg I1, the absorption of zinc is dependent on the amount adsorbed at the body surface: saturation of the surface at higher concentrations leads to more direct dependence on the level of dissolved zinc.

Copyright

References

Hide All
Benson, A. A. & Summons, R.E., 1981. Arsenic accumulation in Great Barrier Reef invertebrates. Science, New York, 211, 482483.
Blanquet, R.S., Nevenzel, J.C. & Benson, A.A., 1979. Acetate incorporation into the lipids of the anemone Anthopleura elegantissima and its associated zooxanthellae. Marine Biology, 54, 185194.
Boyden, C.R., 1977. Effect of size upon metal content of shellfish. Journal of the Marine Biological Association of the United Kingdom, 57, 675714.
Brooks, R.R., Presley, B.J. & Kaplan, I.R., 1967. APDC-MIBK extraction system for the determination of trace metals in saline waters by atomic-absorption spectrophotometry. Talanta, 14, 809816.
Brown, B.E. & Howard, S., 1985. Responses of coelenterates to trace metals: a field and laboratory evaluation. Proceedings of the International Coral Reef Symposium, 6, 465470.
Bryan, G.W., 1983. Brown seaweed, Fucus vesiculosus, and the gastropod, Littorina Httoralis, as indicators of trace metal availability in estuaries. Science of the Total Environment, 28, 91104.
Bryan, G.W. & Gibbs, P.E., 1983. Heavy metals in the Fal estuary, Cornwall: A study of long term contamination by mining waste and its effects on estuarine organisms. Occasional Publications. Marine Biological Association of the United Kingdom, no. 2, 112 pp.
Bryan, G.W. & Hummerstone, L.G., 1973. Adaptation of the polychaete Nereis diversicolor to estuarine sediments containing high concentrations of zinc and cadmium. Journal of the Marine Biological Association of the United Kingdom, 53, 839857.
Bryan, G.W., Langston, W.J., Hummerstone, L.G. & Burt, G.R., 1985. A guide to the assessment of heavy-metal contamination in estuaries using biological indicators. Occasional Publications. Marine Biological Association of the United Kingdom, no. 4, 92 pp.
Bryan, G. W., Ward, E. & Hummerstone, L.G., 1986. Zinc regulation in the lobster Homarus gammarus: importance of different pathways of absorption and excretion. Journal of the Marine Biological Association of the United Kingdom, 66, 175199.
Buddemeier, R.W., Schneider, R.C. & Smith, S.V., 1981. The alkaline earth chemistry of corals. Proceedings of the International Coral Reef Symposium, 2, 8185.
Davies, M., 1988. Nitrogen Flux in the Symbiotic Sea Anemone Anemonia viridis (Forskål). PhD Thesis, University of Glasgow.
Depledge, M.H., 1989. Re-evaluation of metabolic requirements for copper and zinc in decapod crustaceans. Marine Environmental Research, 27, 115126.
Harland, A.D. & Brown, B.E., 1989. Metal tolerance in the scleractinian coral Porites lutea. Marine Pollution Bulletin, 20, 353357.
Harland, A.D. & Nganro, N.R., 1990. Copper uptake by the sea anemone Anemonia viridis and the role of zooxanthellae in metal regulation. Marine Biology, 104, 297301.
Howard, L. S., Crosby, D. G. & Alino, P., 1986. Evaluation of some of the methods for quantitatively assessing the toxicity of heavy metals to corals. In Coral Reef Population Biology (ed. P.C., Jokielet al.), pp. 452464. University of Hawaii. [Hawaii Institute of Marine Biology technical report, no. 37.]
Howell, R., 1982. The secretion of mucus by marine nematodes (Enoplus sp.). A possible mechanism influencing the uptake and loss of heavy metal pollutants. Nematologica, 28, 110114.
Klumpp, D. W. & Peterson, P.J., 1979. Arsenic and other trace elements in the waters and organisms of an estuary in S.W. England. Environmental Pollution, 19, 1120.
Langston, W.J. & Zhou, M., 1986. Evaluation of metal-binding proteins in the gastropod Littorina littorea. Marine Biology, 92, 505515.
Langston, W.J. & Zhou, M., 1987. Cadmium accumulation, distribution and elimination in the bivalve mollusc Macoma balthica: neither metallothionein nor metallothionein-like proteins are involved. Marine Environmental Research, 21, 225237.
Leatherland, T.M. & Burton, J.D., 1974. The occurrence of some trace metals in coastal organisms with particular reference to the Solent region. Journal of the Marine Biological Association of the United Kingdom, 54, 457468.
Owens, M., 1984. Severn Estuary - an appraisal of water quality. Marine Pollution Bulletin, 15, 4147.
Pentreath, R.J., 1977. The accumulation of 110mAg by the plaice Pleuronectes platessa L. and the thornback ray, Raja clavata L. Journal of Experimental Marine Biology and Ecology, 29, 315325.
Rainbow, P.S. & White, S.L., 1989. Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle. Hydrobiologia, 174, 245262.
Riley, J.P. & Segar, D.A., 1970. The distribution of the major and some minor elements in marine animals. I. Echinoderms and coelenterates. Journal of the Marine Biological Association of the United Kingdom, 50, 721730.
Tytler, E.M. & Davies, P.S., 1986. The budget of photosynthetically derived energy in the Anemonia sulcata (Pennant) symbiosis. Journal of Experimental Marine Biology and Ecology, 99, 257269.
White, S.L. & Rainbow, P.S., 1985. On the metabolic requirements for copper and zinc in molluscs and crustaceans. Marine Environmental Research, 16, 215229.

Related content

Powered by UNSILO

Zinc and cadmium absorption in the symbiotic anemone Anemonia viridis and the non-symbiotic anemone Actinia equina

  • A. D. Harland (a1), G. W. Bryan (a2) and B. E. Brown (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.