Skip to main content Accessibility help
×
Home

Trophic ecology of the octocoral Carijoa riisei from littoral of Pernambuco, Brazil. I. Composition and spatio-temporal variation of the diet

  • Ana K.F. Lira (a1), Jean-Philippe Naud (a2), Paula B. Gomes (a3), Andre M. Santos (a4) and Carlos D. Perez (a4)...

Abstract

Octocorals are common components of sublittoral benthic communities in temperate, tropical and polar areas. However, their natural diets and feeding rates are poorly known. The aim of this study was to determine qualitatively–quantitatively the diet of the octocoral Carijoa riisei (snowflake coral) and analyse the distribution and diet composition throughout a whole year at two different depths of the same environment. Hence, 30 colonies were haphazardly sampled for gastric content analysis from 2 and 6 m deep (surface and bottom) at Porto de Galinhas beach, Pernambuco, Brazil, in January, June and October 2006, and March 2007. Relative and absolute abundance, richness and occurrence frequency per gastric cavity were assessed. Shannon–Wiener index (H′) and evenness were also calculated. Items were classified according to the occurrence frequency. The biovolume of preys was estimated from meristic data, and from the biovolume were then estimated wet weight, dry weight and organic carbon. Weighed biovolume (WBV), which relates biomass and abundance, was assessed to estimate the real contribution of preys to octocoral diet. Results attested the presence of 102 phytoplankton and 25 zooplankton taxa. Mean prey size was 112.7 µm. Diatoms showed the greater richness with 88 morphotypes. Only cyanophytes and diatoms, from phytoplankton, were very common (>70%). As a whole, phytoplankton was also the most abundant group (83%), followed by crustacean fragments (5%). Thus, although having low biovolume (<0.09 mm3×10−3), the phytoplankton showed the highest WBV (44.5%). Feeding items richness was homogeneous throughout the study year and in both depths, while abundance showed significant seasonal and bathymetric fluctuation. The t-test (Hutchinson) found significant differences for prey item diversity related to depth and season. From the analysis, it is possible to conclude that the C. riisei population of the Brazilian north-eastern coast is polyphagous, but shows preference for phytoplanktonic elements and small prey. Therefore, the species behaves as a passive suspensivorous feeder with equitable biomass contribution from phytoplankton and zooplankton.

Copyright

Corresponding author

Correspondence should be addressed to: Carlos D. Perez, Universidade Federal de Pernambuco, CAV, Rua do Alto do Reservatório s/n, Bela Vista, 55608680 Vitória de Santo Antão, PE, Brazil email: cdperez@ufpe.br

References

Hide All
Acuña, F.H. and Zamponi, M.O. (1995) Feeding ecology of intertidal sea anemones (Cnidaria, Actiniaria): food sources and trophic parameters. Biociencias 3, 7384.
Anthony, K.R.N. (1999) Coral suspension feeding on fine particulate matter. Journal of Experimental Marine Biology and Ecology 232, 85106.
Anthony, K.R.N. (2000) Enhanced particle-feeding activity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19, 5967.
Bak, R.P.M., Joenje, M., de Jong, I., Lambrechts, D.Y.M. and Nieuwland, G. (1998) Bacterial suspension feeding by coral reef benthic organisms. Marine Ecology Progress Series 175, 85288.
Beers, J.R. (1966). Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea of Bermuda. Limnology and Oceanography 11, 520528.
Chaves, N.S. (1996) Beach-rocks do litoral pernambucano, estudo sedimentológico e análise de isótopos estáveis. MSc thesis. Universidade Federal de Pernambuco, Recife, Brazil.
Coma, R., Gili, J.-M., Zabala, M. and Riera, T. (1994) Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Marine Ecology Progress Series 115, 257270.
Coma, R., Gili, J.-M. and Zabala, M. (1995) Trophic ecology of a benthic marine hydroid, Campanularia everta. Marine Ecology Progress Series 119, 221–220.
Coma, R., Ribes, M., Orejas, C. and Gili, J.-M. (1999) Prey capture by a benthic coral reef hydrozoan. Coral Reefs 18, 141145.
Concepcion, G.T., Crepeau, M.W., Wagner, D., Kahng, S.E., Toonen, R.J. (2008) An alternative to ITS, a hypervariable, single-copy nuclear intron in corals, and its use in detecting cryptic species within the octocoral genus Carijoa. Coral Reefs 27, 323336.
Fabricius, K. (1996) Herbivory in soft corals: correction. Science 273, 293.
Fabricius, K., Benayahu, Y. and Genin, A. (1995) Herbivory in asymbiotic soft corals. Science 286, 9092.
Genzano, G.N. (2005) Trophic ecology of a benthic intertidal hydroid, Tubularia crocea, at Mar del Plata, Argentina. Journal of the Marine Biological Association of the United Kingdom 85, 307312.
Gili, J.-M. and Coma, R. (1998) Benthic suspension feeders: their paramount role in littoral marine webs. Trends in Ecology and Evolution 13, 316321.
Gili, J.-M., Alva, V., Coma, R., Orejas, C., Pages, F., Ribes, M., Zabala, M., Arntz, W., Bouillion, J., Boero, F. and Hughes, R.G. (1997) The impact of small benthic passive suspension feeders in shallow marine ecosystems: the hydroids as an example. Zoologische Verhandelingen Leiden 323, 99105.
Gravier-Bonnet, N. and Mioche, D. (1996) Annual survey of hydroids (Cnidaria, Hydrozoa) cohabiting in shrimp-crevices on a reef of La Réunion (Indian Ocean). Scientia Marina 60, 165181.
Grigg, R.W. (2003) Invasion of a deep water coral bed by an alien species, Carijoa riisei. Coral Reefs 22, 121122.
Hall, K.J., Weimer, W.C. and Fred Lee, G. (1970) Amino acids in an estuarine environment. Limnology and Oceanography 15, 162164.
Hardy, E.R., Robertson, B. and Koste, E. (1984) About the relationship between the zooplankton and fluctuating water levels of Lago Camaleão, Central Amazonian várzea Lake. Amazoniana 9, 4352.
Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U. and Zohary, T. (1999) Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403424.
Kahng, S.E. and Grigg, R.W. (2005) Impact of an alien octocoral, Carijoa riisei, on black corals in Hawaii. Coral Reefs 24, 556562.
Krebs, C.J. (1989) Ecological methodology. New York: Harper Collins Publishers.
Lewis, J.B. (1982) Feeding behaviour and feeding ecology of the Octocorallia (Coelenterata: Anthozoa). Journal of Zoology 196, 371384.
López-Fuerte, F.O., Beltrones, D.A.S. and Aguero, G.C. (2007) Biovolumen ponderado; índice para estimar la contribución de espécies en asociaciones de diatomeas bentônicas. Hidrobiologica 17, 8386.
Migné, A. and Davoult, D. (2002) Experimental nutrition in the soft coral Alcyonium digitatum (Linnaeus, 1758). Cahiers de Biologie Marine 43, 916.
Muus, B.J. (1968) A field method for measuring ‘exposure’ by means of plaster balls, a preliminary account. Sarsia 34, 6168.
Neumann-Leitão, S. and Matsumura-Tundisi, T. (1998) Dynamics of a perturbed estuarine zooplanktonic community: Port of Suape, PE, Brazil. Verhandlungen der Internationale Vereinigung für Limnologie 26, 19811988.
Neves, B.M., Lima, E.J.B. and Perez, C.D. (2007) Brittle stars associated (Echinodermata: Ophiuroidea) with the octocoral Carijoa riisei (Cnidaria: Anthozoa) from the littoral of Pernambuco, Brazil. Journal of the Marine Biological Association of the United Kingdom 85, 307312.
Orejas, C., Gili, J.M., Alvá, V. and Arntz, W. (2000) Predatory impact of an epiphytic hydrozoan in an upwelling area in the Bay of Coluino (Dicharta, Chile). Journal of Sea Research 44, 209–209.
Orejas, C., Gili, J.-M. and Arntz, W. (2003) Role of small-plankton communities in the diet of two Antartic octocorals (Primnoisis antartica and Primnoella sp.). Marine Ecology Progress Series 250, 105116.
Perez, C.D. (2002) Octocorais (Cnidaria, Octocorallia) do litoral pernambucano (Brasil). In Tabarelli, M. and Silva, J.M.P. (eds) Diagnóstico da biodiversidade de Pernambuco. Recife: Editora Massangana, pp. 365368.
Rees, J.T. (1972) The effect of current on growth form in an octocoral. Journal of Experimental Marine Biology and Ecology 10, 115123.
Ribes, M., Coma, R. and Gili, J.-M. (1999) Heterogeneous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidara: Octocorallia) over a year cycle. Marine Ecology Progress Series 183, 125137.
Ribes, M., Coma, R. and Rossi, S. (2003) Natural feeding of the temperate asymbiotic octocoral–gorgonian Leptogorgia sarmentosa (Cnidaria: Ocotocorallia). Marine Ecology Progress Series 254, 141150.
Rossa, D.C., Bonecker, C.C. and Fulone, L.J. (2007) Rotifer biomass in freshwater environments: review of methods and influencing factors. Interciencia 32, 220226.
Rossi, S., Ribes, M., Coma, R. and Gili, J.-M. (2004) Temporal variability in zooplankton prey capture rate of the passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Marine Biology 144, 8999.
Schlichter, D. and Brendelberger, H. (1998) Plasticity of the scleractinian body plan: functional morphology and trophic specialization of Mycedium elephantotus (Pallas, 1766). Facies 39, 227242.
Sebens, K.P. and Koehl, M.A.R. (1984) Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Marine Biology 81, 255271.
Sebens, K.S., Grace, S.P., Helmuth, B., Maney, E.J. Jr. and Miles, J.S. (1998) Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a field enclosure. Marine Biology 131, 347360.
Slattery, M., McClintock, J.B. and Bowser, S.S. (1997) Deposit feeding: a novel mode of nutrition in the Antarctic colonial soft coral Gersemia antarctica. Marine Ecology Progress Series 149, 299304.
Sokal, R.R. and Rohlf, F.J. (1996) Biometry: the principles and practice of statistics in biological research, 3rd edition. New York: W.H. Freeman and Co.
Sorokin, Yu.I. (1990) Plankton in the reef ecosystems. In Dubinsky, Z. (ed.) Ecosystems of the world. Amsterdam: Elsevier, pp. 291328.
Souza, J.R.B., Rodrigues, H.A., Neves, B.M. and Perez, C.D. (2007) First report of bristleworm predator of the reef octocoral Carijoa riisei. Coral Reefs 26, 1033.
Tsounis, G., Rossi, S., Laudien, J., Bramanti, L., Fernández, N., Gili, J.-M. and Arntz, W. (2005) Diet and seasonal prey capture rates in the Mediterranean red coral (Corallium rubrum L.). Marine Biology 149, 313325.
Widding, A. and Schlichter, D. (2001) Phytoplankton: a significant trophic source for soft corals? Helgoland Marine Research 55, 198211.
Zar, J.H. (1996) Biostatistical analysis, 3rd edition. London: Prentice-Hall Inc.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed