Skip to main content Accessibility help

Similarity in benthic habitat and fish assemblages in the upper mesophotic and shallow water reefs in the West Philippine Sea

  • Timothy Joseph R. Quimpo (a1), Patrick C. Cabaitan (a1), Kevin Thomas B. Go (a1), Edwin E. Dumalagan (a1), Cesar L. Villanoy (a1) and Fernando P. Siringan (a1)...


The South China Sea (SCS) is a biodiversity hotspot, however, most biodiversity surveys in the region are confined to shallow water reefs. Here, we studied the benthic habitat and fish assemblages in the upper mesophotic coral ecosystems (MCEs; 30–40 m) and SWRs (8–22 m) at three geographic locations (Luzon Strait; Palawan; and the Kalayaan Group of Islands) in the eastern SCS (also called the West Philippine Sea) using diver-based survey methods. Mean coral genera and fish species richness ranged from 17–25 (per 25 m2) and 11–17 (per 250 m2) in MCEs, respectively; although none of these were novel genera/species. Coral and fish assemblages were structured more strongly by location than by depth. Location differences were associated with the variability in benthic composition, wherein locations with higher hard coral cover had higher coral genera richness and abundance. Locations with higher algae and sand cover had higher diversity and density of fish herbivores and benthic invertivores. Fishing efforts may also have contributed to among-location differences as the highly exploited location had the lowest fish biomass. The low variation between depths may be attributed to the similar benthic composition at each location, the interconnectivity between depths due to hydrological conditions, fish motility, and the common fishing gears used in the Philippines that can likely extend beyond SWRs. Results imply that local-scale factors and anthropogenic disturbances probably dampen across-depth structuring in coral genera and fish species assemblages.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Similarity in benthic habitat and fish assemblages in the upper mesophotic and shallow water reefs in the West Philippine Sea
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Similarity in benthic habitat and fish assemblages in the upper mesophotic and shallow water reefs in the West Philippine Sea
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Similarity in benthic habitat and fish assemblages in the upper mesophotic and shallow water reefs in the West Philippine Sea
      Available formats


Corresponding author

Author for correspondence: Patrick C. Cabaitan, Email:


Hide All
Abesamis, RA, Langlois, T, Birt, M, Thillainath, E, Bucol, AA, Arceo, HO and Russ, GR (2017) Benthic habitat and fish assemblage structure from shallow to mesophotic depths in a storm-impacted marine protected area. Coral Reefs 37, 8197.
Aliño, PM and Gomez, ED (1994) Philippine coral reef conservation: its significance to the South China Sea. In Yamazato, K, Ishijima, S, Sakihara, S, Taira, H, Shimabukuro, Z, Teruya, F and Nishihira, F (eds), Development and Conservation in the Asia-Pacific Region. Proceedings of the Regional Conference of the East-West Center Association. Okinawa: The East-West Center Association, pp. 222229.
Aliño, PM, Nañola, CL, Ochovillo, DG and Rañola, MC (1998) The fisheries potential of the Kalayaan Island Group, South China Sea. International Conference on the Marine Biology of the South China Sea, Hong Kong.
Anderson, MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246.
Anderson, MJ (2017) Permuatational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. Available at (Accessed 1 October 2018).
Anderson, MJ and Walsh, DC (2013) PERMANOVA, ANOSIM and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monograph. Available at
Assis, J, Tyberghein, L, Bosh, S, Verbruggen, H, Serrão, EA and De Clerck, O (2017) Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography 27, 277284.
Baldwin, CC, Tornabene, L and Robertson, DR (2018) Below the mesophotic. Scientific Reports 8, 113.
Bell, JD and Galzin, R (1984) Influence of live coral cover on coral-reef fish communities. Marine Ecology Progress Series 15, 265274.
Bongaerts, P, Ridgway, T, Sampayo, EM and Hoegh-Guldberg, O (2010) Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29, 309327.
Bongaerts, P, Riginos, C, Brunner, R, Englebert, N, Smith, SR and Heogh-Guldberg, O (2017) Deep reefs are not universal refuges: reseeding potential varies among coral species. Science Advances 3, e1602373.
Bridge, TCL, Done, TJ, Friedman, A, Beaman, RJ, Williams, SB, Pizarro, O and Webster, JM (2011) Variability in mesophotic coral communities along the Great Barrier Reef, Australia. Marine Ecology Progress Series 428, 6375.
Burke, L, Reytar, K, Spalding, M and Perry, A (2012) Reefs at Risk Revisited in the Coral Triangle. Washington, DC: World Resources Institute, 65 pp.
Cabaitan, PC, Quimpo, TJR, Dumalagan, EE Jr, Munar, J, Calleja, MAC, Olavides, RDD, Go, K, Albelda, R, Cabactulan, D, Tinacba, EJC, Doctor, MAA, Villanoy, CL and Siringan, FP (2019) The Philippines. In Loya, Y, Puglise, KA and Bridge, TCL (eds), Mesophotic Coral Ecosystems, Coral Reefs of the World 12. Cham: Springer, pp. 265284.
Cabasan, JP, Solier, MGDSML, Manual, LTC, Paradela, MA and Nañola, CL Jr (2017) Morphological differentiation in the populations of three reef fishes with varying pelagic larval strategies in the southern Philippines. Coastal Ecosystems 4, 111.
Carpenter, KE and Springer, VG (2005) The center of marine shore fish biodiversity: the Philippine Islands. Environmental Biology of Fishes 72, 467480.
Chiappone, M and Sullivan, KM (1996) Distribution, abundance and species composition of juvenile scleractinian corals in the Florida Reef Tract. Bulletin of Marine Science 58, 555569.
Connell, JH (1997) Disturbance and recovery of coral assemblages. Coral Reefs 16, 101113.
Dalzell, P (1996) Catch rates, selectivity and yields of reef fishing. Reef Fisheries 20, 161192.
Dikou, A and van Woesik, R (2006) Survival under chronic stress from sediment load: spatial patterns of hard coral communities in the southern islands of Singapore. Marine Pollution Bulletin 52, 13401354.
Done, TJ (1982) Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1, 95107.
Dorman, JG, Castruccio, FS, Curchitser, EN, Kleypas, JA and Powell, TM (2015) Modeled connectivity of Acropora millepora populations from reefs of the Spratly Islands and the greater South China Sea. Coral Reefs 35, 169179.
English, S, Wilkinson, C and Baker, V (1997) Survey Manual for Tropical Marine Resources, 2nd Edn. Australian Institute of Marine Science, AEAN-Australia Marine Science Project.
Fabinyi, M and Dalabajan, D (2011) Policy and practice in the live reef fish for food trade: a case study from Palawan, Philippines. Marine Policy 35, 371378.
Fabinyi, M, Pido, M, Harani, B, Caceres, J, Uyami-Bitara, A, De las alas, A, Buenconsejo, J and Ponce de Leon, EM (2012) Luxury seafood consumption in China and the intensification of coastal livelihoods in Southeast Asia: The live reef fish for food trade in Balabac, Philippines. Asia Pacific Viewpoint. Available at https//
Feary, DA, Fowler, AM and Ward, TJ (2014) Developing a rapid method for undertaking the World Ocean Assessment in data-poor regions – a case study using the South China Sea large marine ecosystem. Ocean and Coastal Management 95, 129137.
Friedlander, AM and DeMartini, ED (2002) Contrasts in density, size and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Marine Ecology Progress Series 230, 253264.
Froese, R and Pauly, D (2018) FishBase. World Wide Web electronic publication. Available at http://
Fulton, CJ and Bellwood, DR (2004) Wave exposure, swimming performance, and the structure of tropical and temperate reef fish assemblages. Marine Biology 144, 429437.
Gomez, ED (2015) Rehabilitation of biological resources: coral reefs and giant clam populations need to be enhanced for a sustainable marginal sea in the Western Pacific. Journal of International Wildlife Law and Policy 18, 120127.
Gomez, ED, Aliño, PM, Yap, HT and Licuanan, WY (1994) A review of the status of Philippine reefs. Marine Pollution Bulletin 29, 13.
Gomez, ED, Cabaitan, PC, Yap, HT and Dizon, RM (2014) Can coral cover be restored in the absence of natural recruitment and reef recovery? Restoration Ecology. doi: 10.1111/rec.12041.
Gratwicke, B and Speight, MR (2005) The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology. Available at
Harborne, AR, Mumby, PJ and Ferrari, R (2013) The effectiveness of different meso-scale rugosity metrics for predicting intra-habitat variation in coral-reef fish assemblages. Environmental Biology of Fishes 94, 431442.
Heyward, AJ and Negri, AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273279.
Holstein, DM, Paris, CB, Vaz, AC and Smith, TB (2015) Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs. doi: 10.1007/s00338-015-1339-2.
Huang, D, Licuanan, WY, Hoeksema, BW, Chen, CA, Ang, PO, Huang, H, Lnae, DJW, Vo, ST, Waheed, Z, Affendi, YM, Yeemin, T and Chou, M (2015) Extraordinary diversity of reef corals in the South China Sea. Marine Biodiversity 45, 157168.
Hughes, TP, Graham, NA, Jackson, JB, Mumby, PJ and Steneck, RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends in Ecology and Evolution 25, 633642.
Hulburt, HE, Metzger, EJ, Sprintall, J, Riedlinger, SN, Arnone, RA, Shinoda, T and Xu, X (2011) Circulation in the Philippine Archipelago simulated by 1/12° and 1/25° global HYCOM and EAS NCOM. Oceanography 24, 2847.
Jing, Z, Qi, Y, Hua, Z and Zhang, H (2008) Numerical study on the summer upwelling system in the northern continental shelf of the South China Sea. Continental Shelf Research. doi: 10.1016/j.csr.2008.11.008.
Jones, R, Ricardo, GF and Negri, AP (2015) Effects of sediments on the reproductive cycle of corals. Marine Pollution Bulletin 100, 1333.
Juinio-Menez, MA (2015) Biophysical and genetic connectivity considerations in marine biodiversity conservation and management in the South China Sea. Journal of International Law and Policy 18, 110119.
Kahng, SE, Garcia-Sais, JR, Spalding, HL, Brokovich, E, Wagner, D, Weil, E, Hinderstein, L and Toonen, RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs. doi: 10.1007/s00338-010-0593-6.
Kerry, JT and Bellwood, DR (2012) The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs 31, 415424.
Khan, JA, Goatley, CHR, Brandl, SJ, Tebbett, SB and Bellwood, DR (2017) Shelter use by large reef fishes: long-term occupancy and the impacts of disturbance. Coral Reefs 36, 11231132.
Kohler, KE and Gill, SM (2006) Coral Point Count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Computers and Geosciences 32, 12591269.
Komyakova, V, Munday, PL and Jones, GP (2013) Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS ONE 8, e83178. doi: 10.1371/journal.pone.0083178.
Kool, JT, Paris, CB, Barber, PH and Cowen, RK (2011) Connectivity and the development of population genetic structure in Indo-West Pacific coral reef communities. Global Ecology and Biogeography. doi: 10.1111/j.1466-8238-2010.00637.x.
Kuo, NJ, Zheng, Q and Ho, CR (2000) Satellite observation of upwelling along the western coast of the South China Sea. Remote Sensing of Environment 74, 463470.
Lesser, MP, Slattery, M and Leichter, JJ (2009) Ecology of mesophotic coral reefs. Journal of Experimental Marine Biology and Ecology 375, 18.
Licuanan, WY (2009) Guide to the Common Corals of the Bolinao-Anda Reef Complex, Northwest Philippines. Diliman: UP Marine Science Institute.
Licuanan, WY, Robles, R, Dygico, M, Songco, A and van Woesik, R (2017) Coral benchmark in the center of biodiversity. Marine Pollution Bulletin 2, 11351140.
Lindfield, SJ, Harvey, ES, Halford, AR and McIlwain, JL (2016) Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs 35, 125137.
Magdaong, ET, Fujii, M, Yamano, H, Licuanan, WY, Maypa, A, Campos, WL, Alcala, AC, White, AT, Apistar, D and Martinez, R (2014) Long-term change in coral cover and the effectiveness of marine protected areas in the Philippines: a meta-analysis. Hydrobiologia 733, 517.
Mangahas, MF (2010) Seasonal ritual and the regulation of fishing in Batanes Province, Philippines. Managing Coastal and Inland Waters. Available at
McClanahan, TR and Mangi, SC (2003) Gear-based management of a tropical artisanal fishery based on species selectivity and capture size. Fisheries Management and Ecology 11, 5660.
McManus, JW (1994) The Spratly Islands: a marine park? Ambio 23, 181186.
McManus, JW, Shao, K and Lin, S (2010) Toward establishing a Spratly Islands international marine peace park: ecological importance and supportive collaborative activities with an emphasis on the role of Taiwan. Ocean Development and International Law 41, 270280.
Morton, B and Blackmore, G (2001) South China Sea. Marine Pollution Bulletin 42, 12361263.
Muallil, RN, Geronimo, RC, Cleland, D, Cabral, RB, Doctor, MV, Cruz-Trinidad, A and Aliño, PM (2011) Willingness to exit the artisanal fishery as a response to scenarios of declining catch or increasing monetary incentives. Fisheries Research 111, 7481.
Muallil, RN, Mamuag, SS, Cababaro, JT, Arceo, HO and Aliño, PM (2014) Catch trends in Philippine small-scale fisheries over the last five decades: the fishers’ perspective. Marine Policy 47, 110117.
Nacorda, HME, Dizon, RM, Meñez, LAB, Nañola, CL, Roa-Chio, PBL, De Jesus, DO, Hernandez, HB, Quimpo, FTR, Licuanan, WRY, Aliño, PM and Villanoy, CL (2017) Beneath 50 m of NW Pacific Water: coral reefs on the Benham Bank Seamount off the Philippine Sea. Journal of Environmental Science and Management 20, 110121.
Nañola, CL Jr, Aliño, P, Arceo, H, Licuanan, W, Uychiaoco, A, Quibilan, M, Campos, W, Alcala, A, White, A and Gomez, E (2006) Status report on coral reefs of the Philippines – 2004. Proceedings of the 10th International Coral Reef Symposium, Okinawa, Japan.
Nañola, CL Jr, Aliño, PM and Carpenter, KE (2010) Exploitation-related reef fish species richness depletion in the epicenter of marine biodiversity. Environmental Biology of Fishes, doi: 10.1007/s10641-010-9750-6.
Oksanen, J, Blanchet, FG, Friendly, M, Kindt, R, Legendre, P, McGlinn, D, Minchin, PT, O'Hara, RB, Simpson, GL, Solymos, P, Stevens, MHM, Szoecs, E and Wagner, H (2017) Vegan: Community Ecology Package Version 2.4–3. Available at
Papastiamatou, YP, Meyer, CG, Kosaki, RK, Wallsgrove, NJ and Popp, BN (2015) Movements and foraging of predators associated with mesophotic coral reefs and their potential for linking ecological habitats. Marine Ecology Progress Series 521, 155170.
Pinheiro, HT, Goodbody-Gringley, G, Jessup, ME, Shepherd, B, Chequer, AD and Rocha, LA (2016) Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs. doi: 10.1007/s00338-015-1381-0.
Quimpo, TJR, Cabaitan, PC, Olavides, RDD, Dumalagan, EE Jr, Munar, J and Siringan, FP (2018 a) Preliminary observations of macrobenthic invertebrates and megafauna communities in the upper mesophotic coral ecosystems in Apo Reef Natural Park, Philippines. Raffles Bulletin of Zoology 66, 111.
Quimpo, TJR, Cabaitan, PC, Olavides, RDD, Dumalagan, EE Jr, Munar, J and Siringan, FP (2018 b) Spatial variability in reef-fish assemblages in shallow and upper mesophotic coral ecosystems in the Philippines. Journal of Fish Biology. Available at
R Core Team (2018) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at
Randall, JE and Lim, KKP (2000) A checklist of the fishes of the South China Sea. Raffles Bulletin of Zoology 8, 568667.
Rocha, LA, Pinheiro, HT, Shepard, B, Papastamatiou, YP, Luiz, OJ, Pyle, RL and Bongaerts, P (2018) Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281284.
Rogers, CS (1990) Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series 62, 185202.
Ross, MA and Hodgson, G (1981) A quantitative study of hermatypic coral diversity and zonation at Apo Reef, Mindoro, Philippines. Proceedings of the 4 th International Coral Reef Symposium, Manila.
Rossi, JP (2011) Rich: an R package to analyse species richness. Diversity 3, 112120.
Russ, G, Miller, K, Rizzari, J and Alcala, A (2015 a) Long-term no-take marine reserve and benthic habitat effects on coral reef fishes. Marine Ecology Progress Series Vol. 529: 233248, 2015.
Russ, GR, Questel, SLA, Rizzari, JR and Alcala, AC (2015 b) The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Marine Biology 162, 20292045.
Sampson, DB (1991) Fishing tactics and fish abundance, and their influence on catch rates. ICES Journal of Marine Science 48, 291301.
Semmler, RF, Hoot, WC and Reaka, ML (2016) Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs? Coral Reefs. doi: 10.1007/s00338-016-1530-0.
Shaw, P, Liu, K, Pai, S and Liu, C (1996) Winter upwelling off Luzon in the northeastern South China Sea. Journal of Geophysical Research 101, 435448.
Shibuno, T, Hashimoto, K, Abe, O and Takada, Y (1999) Short-term changes in the structure of a fish community following coral bleaching at Ishigaki Island, Japan. Galaxea 1, 5158.
Slattery, M, Lesser, MP, Brazeau, D, Stokes, MD and Leichter, JJ (2011) Connectivity and stability of mesophotic coral reefs. Journal of Experimental Marine Biology and Ecology 498, 3241.
Soto, D, De Palmas, S, Ho, MJ, Denis, V and Chen, CA (2018) Spatial variation in the morphological traits of Pocillopora verrucosa along a depth gradient in Taiwan. PLoS ONE 13(8), e0202586. Available at
Tenggardjaja, KA, Bowen, BW and Bernard, G (2014) Vertical and horizontal genetic connectivity in Chromis verater, an endemic damselfish found on shallow and mesphotic reefs in the Hawaiian Archipelago and adjacent Johnston Atoll. PLoS ONE 9, e115493. doi: 1371/journal.pone.0115493.
Tran, C and Hadfield, MG (2011) Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Marine Ecology Progress Series 433, 8596.
Turner, JA, Babcock, RC, Hovey, R and Kendrick, G (2017) Deep thinking: a systematic review of mesophotic coral ecosystem. ICES Journal of Marine Science. Available at
Veron, JEN, Devantier, LM, Turak, E, Green, AL, Kininmonth, S, Stafford-Smith, M and Peterson, N (2009) Delineating the coral triangle. Galaxea Journal of Coral Reef Studies 11, 91100.


Type Description Title
Supplementary materials

Quimpo et al. supplementary material
Quimpo et al. supplementary material 1

 Word (18 KB)
18 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed