Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T04:30:12.129Z Has data issue: false hasContentIssue false

Replicability of an epibenthic sampler

Published online by Cambridge University Press:  11 May 2009

T. Brattegard
Affiliation:
Department of Fisheries and Marine Biology, University of Bergen, Thormöhlens gt. 55, N–5008 Bergen, Norway
J. H. Fosså
Affiliation:
Department of Fisheries and Marine Biology, University of Bergen, Thormöhlens gt. 55, N–5008 Bergen, Norway

Extract

Hyperbenthos was sampled at six stations on the western slope of the Norwegian Trough. Four hauls, two day and two night replicates were taken at each station. The replicates were analyzed based on all sampled individuals of Mysidacea and Decapoda Natantia using Shannon diversity index, Spearman rank correlation, G-test, Bray-Curtis similarity index and Correspondence Analysis. The sampler provided samples of mysids and shrimps with an acceptable level of replicability based on number of individuals and diversity. In a cost-efficient context it is satisfactory to take only one sample at a station.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BeyerF., F., 1958. A new, bottom-living Trachymedusa from the Oslofjord. Description of the species, and a general discussion of the life conditions and fauna of the fjord deeps. Nytt Magasin for Zoologi, 6, 121143.Google Scholar
BrunelP., P.,BesnerM., M.,MessierD., D.,PoirierL., L.,Granger, D. & WeinsteinM, M, 1978. Le traîneau suprabenthique MACER-GIROQ: appareil amélioré pour l'échantillonnage quantitatif étagé de la petite faune nageuse au voisinage du fond. Internationale Revue der Gesamten Hydrobiologie, 63, 815829.CrossRefGoogle Scholar
Buhl-JensenL., L., 1986. The benthic amphipod fauna of the west-Norwegian continental shelf compared with the fauna of five adjacent fjords. Sarsia, 71, 193208.CrossRefGoogle Scholar
Carney, R.S. & CareyA.G., A.G., 1980. Effectiveness of metering wheels for measurement of area sampled by beam trawls. Fishery Bulletin. National Oceanic and Atmospheric Administration of the United States, 78, 791796.Google Scholar
Eleftheriou, A. & HolmeN.A., N.A., 1984. Macrofauna techniques. In Methods for the Study of Marine Benthos (ed. Holme, N.A. and Mclntyre, A. D.) pp. 140216. Oxford: Blackwell Scientific Publications.Google Scholar
FieldJ.G., J.G.,Clarke, K.R. & WarwickR.M., R.M., 1982. A practical strategy for analysing multispecies distribution patterns. Marine Ecology Progress Series, 8, 3752.CrossRefGoogle Scholar
FossåJ.H., J.H., 1985. Near-bottom vertical zonation during daytime of deep-living hyperbenthic mysids (Crustacea: Mysidacea). Sarsia, 70, 297307.CrossRefGoogle Scholar
FossåJ.H., J.H., 1986. Aquarium observations on vertical zonation and bottom relationships of some deep-living hyperbenthic mysids (Crustacea: Mysidacea). Ophelia, 25, 107117.CrossRefGoogle Scholar
HesthagenI.H., I.H., 1970. On the near-bottom plankton and benthic invertebrate fauna of the Josephine Seamount and the Great Meteor Seamount. ‘Meteor’ Forschungsergebnisse (reihe D), no. 8, 6170.Google Scholar
HesthagenI.H., I.H., 1973. Diurnal and seasonal variations in the near-bottom fauna - the hyperbenthos - in one of the deeper channels of the Kieler Bucht (Western Baltic). Kieler Meeresforschungen, 29, 116140.Google Scholar
Hesthagen, I.H. & GjermundsenB., B., 1978. The replicability of sampling the hyperbenthic region by means of Beyer's 50 cm epibenthic closing net. Meeresforschung. Reports on Marine Research, 26, 110.Google Scholar
Huberdeau, L. & BruneiP., P., 1982. Efficacité et sélectivité faunistique comparée de quatre appareils de prélèvements endo-, épi- et suprabenthiques sur deux types de fonds. Marine Biology, 69,331343.CrossRefGoogle Scholar
KaartvedtS., S., 1985. Diel changes in small-scale vertical distribution of hyperbenthic mysids. Sarsia, 70, 287295.CrossRefGoogle Scholar
MagurranA.E., A.E., 1988. Ecological Diversity and its Measurement. Cambridge: University Press.CrossRefGoogle Scholar
OugE., E., 1977. Faunal distribution close to the sediment of a shallow marine environment. Sarsia, 63, 115121.CrossRefGoogle Scholar
PielouE.C., E.C., 1977. Mathematical Ecology. New York: John Wiley.Google Scholar
RiceA.L., A.L.,AldredR.G., R.G.,Darlington, E. & WildR.A., R.A., 1982. The quantitative estimation of the deepsea megabenthos: a new approach to an old problem. Oceanologica Acta, 5, 6372.Google Scholar
Rothlisberg, P.C. & PearcyW.G., W.G., 1977. An epibenthic sampler used to study the ontogeny of vertical migration of Pandalus jordani (Decapoda, Caridea). Fishery Bulletin. National Oceanic and Atmospheric Administration of the United States, 74, 994997.Google Scholar
SchnackD., D., 1978. Comments on sampling tests made with Beyer's epibenthic closing net. Meeresforschung. Reports on Marine Research, 26, 1114.Google Scholar
SiegelS., S., 1956. Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill.Google Scholar
Sokal, R.R. & RohlfF.J., F.J., 1981. Biometry. San Francisco: W.K. Freeman & Co.Google Scholar
SorbeJ.C., J.C., 1983. Description d'un traîneau destiné à l'échantillonnage quantitatif étagé de la faune suprabenthique néritique. Annales de l'lnstitut Océanographiaue, 59,117126.Google Scholar
TerBraakC.J.F., C.J.F., 1987a. Ordination. In Data Analysis in Community and Landscape Ecology (ed. Jongman, R.H.G. et al.), pp. 91173. Wageningen: Pudoc.Google Scholar