Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T20:46:31.692Z Has data issue: false hasContentIssue false

Recruitment variation in subtidal macrofouling assemblages of a Patagonian harbour (Argentina, south-western Atlantic)

Published online by Cambridge University Press:  19 October 2009

Alicia Rico
Affiliation:
Departamento de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia, Ciudad Universitaria, Km 4, 9000 Comodoro Rivadavia, Chubut, Argentina
Roxana Peralta
Affiliation:
Departamento de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia, Ciudad Universitaria, Km 4, 9000 Comodoro Rivadavia, Chubut, Argentina
Juan López Gappa*
Affiliation:
Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Angel Gallardo 470, C1405DJR Buenos Aires, Argentina
*
Correspondence should be addressed to: J. López Gappa, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Angel Gallardo 470, C1405DJR Buenos Aires, Argentina email: lgappa@mail.retina.ar

Abstract

The recruitment of subtidal macrofouling organisms was studied in the Patagonian harbour of Comodoro Rivadavia (Argentina, 45°51′35″S 67°27′23″W). Changes in coverage and density were analysed in the central 100 cm2 of upper and lower surfaces which were replaced monthly from January to December 2004. The fouling assemblage consisted of algae, spirorbid polychaetes, compound ascidians, hydrozoans, bryozoans and egg masses spawned by the small fish Helcogrammoides cunninghami. Monthly changes in richness and diversity of taxa on upper and lower surfaces were significantly correlated with sea surface temperature. Fouling assemblage structure differed significantly between upper and lower surfaces. Filamentous algae were dominant on upper surfaces, while filter-feeding invertebrates were more abundant on the lower surfaces of the experimental panels. The density of the spirorbid Romanchella scoresbyi was two orders of magnitude higher on lower than on upper surfaces. Its recruitment began in late winter, reaching maximum values in spring.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babcock, R. and Mundy, C. (1996) Coral recruitment: consequences of settlement choice for early growth and survivorship in two scleractinians. Journal of Experimental Marine Biology and Ecology 206, 179201.CrossRefGoogle Scholar
Barnes, D.K.A. (1996) Low levels of colonisation in Antarctica: the role of bryozoans in early community development. In Gordon, D.P., Smith, A.M. and Grant-Mackie, J.A. (eds) Bryozoans in Space and Time. Proceedings of the 10th International Bryozoology Conference, Wellington, New Zealand, 30 January–3 February 1995. Wellington: National Institute of Water & Atmospheric Research Ltd, pp. 1928.Google Scholar
Barnes, D.K.A., Rothery, P. and Clarke, A. (1996) Colonisation and development in encrusting communities from the Antarctic intertidal and sublittoral. Journal of Experimental Marine Biology and Ecology 196, 251265.CrossRefGoogle Scholar
Bastida, R. (1971) Las incrustaciones biológicas en el puerto de Mar del Plata, período 1966–67. Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Hidrobiología 3, 203285.Google Scholar
Bastida, R. (1973) Studies of the fouling communities along Argentine coasts. In Acker, R.F., Brown, B.F., De Palma, J.R. and Ivarson, W.P. (eds) Proceedings of the 3rd International Congress on Marine Corrosion and Fouling, Gaithersburg, Maryland, 2–6 October, 1972. Washington, DC: National Bureau of Standards Special Publications, pp. 847864.Google Scholar
Bastida, R., Spivak, E., L'Hoste, S.G. and Adabbo, H.E. (1974) Las incrustaciones biológicas de Puerto Belgrano. I. Estudio de la fijación sobre paneles mensuales, período 1971/72. LEMIT Anales 3, 97165.Google Scholar
Bastida, R., Trivi de Mandri, M., Lichtschein de Bastida, V. and Stupak, M. (1980) Ecological aspects of marine fouling at the Port of Mar del Plata (Argentina). In Aritio, L. (ed.) Proceedings of the 5th International Congress on Marine Corrosion and Fouling, Marine Biology, Barcelona, Spain, 19–23 May 1980. Madrid: Gráficas Orbe, pp. 299320.Google Scholar
Bertness, M.D., Crain, C.M., Silliman, B.R., Bazterrica, M.C., Reyna, M.V., Hidalgo, F. and Farina, J.K. (2006) The community structure of western Atlantic Patagonian rocky shores. Ecological Monographs 76, 439460.CrossRefGoogle Scholar
Bowden, D.A. (2005) Seasonality of recruitment in Antarctic sessile marine benthos. Marine Ecology Progress Series 297, 101118.CrossRefGoogle Scholar
Bowden, D.A., Clarke, A., Peck, L.S. and Barnes, D.K.A. (2006) Antarctic sessile marine benthos: colonisation and growth on artificial substrata over three years. Marine Ecology Progress Series 316, 116.CrossRefGoogle Scholar
Brankevich, G., Bastida, R. and Lemmi, C. (1988) A comparative study of biofouling settlements in different sections of Necochea Power Plant (Quequén Port, Argentina). Biofouling 1, 113135.CrossRefGoogle Scholar
Chalmer, P.N. (1982) Settlement patterns of species in a marine fouling community and some mechanisms of succession. Journal of Experimental Marine Biology and Ecology 58, 7385.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M. (2001) Change in marine communities: an approach to statistical analyses and interpretation, 2nd edition. Plymouth: PRIMER-E Ltd.Google Scholar
Connell, J.H. (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710723.CrossRefGoogle Scholar
Connell, J.H. and Slatyer, R.O. (1977) Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist 111, 11191144.CrossRefGoogle Scholar
Cucchi Colleoni, D.A. and Carreto, J.I. (2003) Variabilidad espacio-temporal de la biomasa fitoplanctónica en el Golfo San Jorge. In Boschi, E.E., Bremec, C.S., Cousseau, M.B., Elías, R. and Roux, A.M. (eds) Resúmenes V Jornadas Nacionales de Ciencias del Mar, Mar del Plata, Argentina, 8–12 December 2003. Mar del Plata: Universidad Nacional de Mar del Plata, p. 94.Google Scholar
Dean, T.A. and Hurd, L.E. (1980) Development in an estuarine fouling community: the influence of early colonists on later arrivals. Oecologia 46, 295301.CrossRefGoogle Scholar
Fernández, M., Carreto, J.I., Mora, J. and Roux, A. (2005) Physico-chemical characterization of the benthic environment of the Golfo San Jorge, Argentina. Journal of the Marine Biological Association of the United Kingdom 85, 13171328.CrossRefGoogle Scholar
Fernández, M., Mora, J., Roux, A., Cucchi Colleoni, D.A. and Gasparoni, J.C. (2008) New contribution on spatial and seasonal variability of environmental conditions of the Golfo San Jorge benthic system, Argentina. Journal of the Marine Biological Association of the United Kingdom 88, 227236.CrossRefGoogle Scholar
Gaines, S. and Roughgarden, J. (1985) Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proceedings of the National Academy of Sciences of the United States of America 82, 37073711.CrossRefGoogle Scholar
Glasby, T.M. and Connell, S.D. (2001) Orientation and position of substrata have large effects on epibiotic assemblages. Marine Ecology Progress Series 214, 127135.CrossRefGoogle Scholar
Gordon, D.P. and Mawatari, S.F. (1992) Atlas of marine-fouling bryozoa of New Zealand ports and harbours. Miscellaneous Publications New Zealand Oceanographic Institute 107, 152.Google Scholar
Harris, T. (1969) Spirorbis species (Polychaeta: Serpulidae) from the South Atlantic. Discovery Reports 35, 135178.Google Scholar
Hayden, H.S., Blomster, J., Maggs, C.A., Silva, P.C., Stanhope, M.J. and Waaland, J.R. (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. European Journal of Phycology 38, 277294.CrossRefGoogle Scholar
Irving, A. and Connell, S. (2002) Sedimentation and light penetration interact to maintain heterogeneity of subtidal habitats: algal versus invertebrate dominated assemblages. Marine Ecology Progress Series 245, 8391.CrossRefGoogle Scholar
Knight-Jones, P. and Knight-Jones, E.W. (1984) Systematics, ecology and distribution of southern hemisphere spirorbids (Polychaeta; Spirorbidae). In Hutchings, P.A. (ed.) Proceedings of the First International Polychaete Conference, Sydney, Australia, 4–9 July 1983. Sydney: The Linnean Society of New South Wales, pp. 197210.Google Scholar
Kott, P. (1969) Antarctic Ascidiacea. Antarctic Research Series 13, 1239.Google Scholar
Kott, P. (1971) Antarctic Ascidiacea II. Antarctic Research Series 17, 1182.Google Scholar
Lichtschein de Bastida, V. and Bastida, R. (1980) Los briozoos de las comunidades incrustantes de puertos argentinos. In Aritio, L. (ed.) Proceedings of the 5th International Congress on Marine Corrosion and Fouling, Marine Biology, Barcelona, Spain, 19–23 May 1980. Madrid: Gráficas Orbe, pp. 371390.Google Scholar
Maldonado, M. and Young, C.M. (1996) Effects of physical factors on larval behavior, settlement and recruitment of four tropical demosponges. Marine Ecology Progress Series 138, 169180.CrossRefGoogle Scholar
Muñoz, A.A. and Ojeda, F.P. (1998) Guild structure of carnivorous intertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114, 563573.Google ScholarPubMed
Nandakumar, K. (1995) Competitive interactions among sessile organisms in Tomioka Bay, south Japan: importance of light conditions on the panel surface. Marine Biology 121, 713719.CrossRefGoogle Scholar
Nandakumar, K. (1996) Importance of timing of panel exposure on the competitive outcome and succession of sessile organisms. Marine Ecology Progress Series 131, 191203.CrossRefGoogle Scholar
Paine, R.T. (1971) A short term experimental investigation of resource partitioning in a New Zealand rocky intertidal habitat. Ecology 52, 10961106.CrossRefGoogle Scholar
Paruelo, J.M., Beltrán, A., Jobbágy, E., Sala, O.E. and Golluscio, R.A. (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8, 85101.Google Scholar
Rico, A., Lanas, P. and López Gappa, J. (2005) Colonization potential of the genus Ulva (Chlorophyta, Ulvales) in Comodoro Rivadavia Harbor (Chubut, Argentina). Ciencias Marinas 31, 719735.CrossRefGoogle Scholar
Rico, A. and López Gappa, J. (2006) Fouling community structure on intertidal and subtidal substrata in Comodoro Rivadavia Harbour (Chubut, Argentina). Hydrobiologia 563, 918.CrossRefGoogle Scholar
Satheesh, S. and Wesley, S.G. (2008) Seasonal variability in the recruitment of macrofouling community in Kudankulam waters, east coast of India. Estuarine, Coastal and Shelf Science 79, 518524.CrossRefGoogle Scholar
Scarabino, F. (2006) Faunística y taxonomía de invertebrados bentónicos marinos y estuarinos de la costa uruguaya. In Menafra, R., Rodriguez-Gallego, L., Scarabino, F. and Conde, D. (eds) Bases para la conservación y el manejo de la costa uruguaya. Montevideo: Vida Silvestre Uruguay, pp. 113142.Google Scholar
Schwindt, E., Orensanz, J.M., Raffo, P., Lovrich, G., Tatián, M., Piriz, M.L., López Gappa, J., Alonso, G., Doti, B., Genzano, G., Diez, M.E., Spivak, E.D., Bortolus, A., Casas, G., Darrigran, G., Romero, M.C., Tapella, F., Pérez Barros, P. and Almada, P. (2008) Introducción de especies invasivas en puertos patagónicos. In Volpedo, A., Lo Nostro, F. and Reilly, M.S. (eds) III Congreso Nacional de Conservación de la Biodiversidad, Buenos Aires, Argentina, 11–14 August 2008. Buenos Aires: Universidad de Buenos Aires, p. 332.Google Scholar
Sokal, R.R. and Rohlf, F.J. (1981) Biometry, 2nd edition. New York: Freeman.Google Scholar
Stark, J.S. (2008) Patterns of higher taxon colonisation and development in sessile marine benthic assemblages at Casey Station, Antarctica, and their use in environmental monitoring. Marine Ecology Progress Series 365, 7789.CrossRefGoogle Scholar
Sutherland, J.P. and Karlson, R.H. (1977) Development and stability of the fouling community at Beaufort, North Carolina. Ecological Monographs 47, 425446.CrossRefGoogle Scholar
Underwood, A.J. and Anderson, M.J. (1994) Seasonal and temporal aspects of recruitment and succession in an intertidal estuarine fouling assemblage. Journal of the Marine Biological Association of the United Kingdom 74, 563584.CrossRefGoogle Scholar
Underwood, A.J. and Denley, E.J. (1984) Paradigms, explanations, and generalizations in models for the structure of intertidal communities on rocky shores. In Strong, D.R., Simberloff, D., Abele, L.G. and Thistle, A.B. (eds) Ecological communities: conceptual issues and the evidence. Princeton: Princeton University Press, pp. 151180.CrossRefGoogle Scholar
Underwood, A.J. and Fairweather, P.G. (1989) Supply-side ecology and benthic marine assemblages. Trends in Ecology and Evolution 4, 1620.CrossRefGoogle ScholarPubMed
Varela, M.M. (2007) Contribución al conocimiento de las ascidias coloniales (Chordata: Tunicata) de la Antártida Occidental y Región Magallánica. PhD thesis. Universidad de Alicante, Alicante, Spain.Google Scholar
Vieira, L.M., Migotto, A.E. and Winston, J.E. (2008) Synopsis and annotated checklist of Recent marine Bryozoa from Brazil. Zootaxa 1810, 139.CrossRefGoogle Scholar
Yoshioka, P.M. (2008) Misidentification of the Bray–Curtis similarity index. Marine Ecology Progress Series 368, 309310.CrossRefGoogle Scholar