Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T18:04:11.390Z Has data issue: false hasContentIssue false

Photoperiod Length and the Chronometric Mechanism of the Sun Compass in Mediterranean Sandhoppers

Published online by Cambridge University Press:  11 May 2009

A. Ugolini
Affiliation:
Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17, 1–50125 Firenze, Italy. E-mail: ugolini_alb@dbag.unifi.it
F. Frittelli
Affiliation:
Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17, 1–50125 Firenze, Italy.

Extract

The chronometric mechanism of compensation for the apparent movement of the sun was investigated in adult individuals of Talitrus saltator (Amphipoda: Talitridae) from Mediterranean latitudes. The individuals were subjected to alteration of the duration of illumination, while its phase remained the same as in nature. A close relation between photoperiod length and the chronometric mechanism of the sun compass was observed, which could explain the seasonal adaptation of the sun compass. We propose an alternative to the classic hypothesis of daily differential compensation for the apparent movement of the sun.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arendse, M.C., 1978. Magnetic field detection is distinct from light detection in the invertebrates Tenebrio and Talitrus. Nature, London, 274, 358362.CrossRefGoogle Scholar
Arendse, M.C., 1980. Non-visual orientation in the sandhopper Talitrus saltator (Montagu). Netherlands Journal of Zoology, 30, 535554.CrossRefGoogle Scholar
Arendse, M.C. & Kruyswijk, C.J., 1981. Orientation of Talitrus saltator to magnetic field. Netherlands Journal of Sea Research, 15, 2332.Google Scholar
Batschelet, E., 1981. Circular statistics in biology. London: Academic Press.Google Scholar
Birukow, G., 1960. Innate types of chronometry in insect orientation. Cold Spring Harbor Symposia on Quantitative Biology, Biological Clocks, 25, 403412.CrossRefGoogle Scholar
Braemer, W., 1960. A critical review of the sun-azimuth hypothesis. Cold Spring Harbor Symposia on Quantitative Biology, Biological Clocks, 25, 413427.Google Scholar
Braemer, W. & Schwassmann, H., 1963. Vom Rhythmus der Sonnenorientierung am quator (bei Fischen). Ergebnisse der Biologie, 26, 182201.Google Scholar
Bregazzi, P.K., 1972. The effects of low temperature upon the locomotor activity rhythm of Talitrus saltator (Montagu) (Crustacea: Amphipoda). Journal of Experimental Biology, 57, 393399.CrossRefGoogle Scholar
Bregazzi, P.K. & Naylor, E., 1972. The locomotor activity rhythm of Talitrus saltator (Montagu) (Crustacea, Amphipoda). Journal of Experimental Biology, 57, 375391.CrossRefGoogle Scholar
Bunning, E., 1971. Symptoms, problems and common features of circadian rhythms in plants and animals. In Proceedings of an International Symposium on Circadian Rhythmicity (ed. J.F., Bierhuizen), pp. 1131. Wageningen: Veenman & Zonen.Google Scholar
Edwards, J.M. & Naylor, E., 1987. Endogenous circadian changes in orientational behaviour of Talitrus saltator. Journal of the Marine Biological Association of the United Kingdom, 67, 1726.Google Scholar
Ercolini, A., 1963. Ricerche sull'orientamento solare degli Anfipodi. La variazione dell'orientamento in cattività. Archivio Zoologico Italiano, 48, 147179.Google Scholar
Ercolini, A., 1964. Ricerche sull'orientamento astronomico di Anfipodi litorali della zona equatoriale. I. L'orientamento solare in una popolazione somala di Talorchestia martensii Weber. Zeitschrift für Vergleichende Physiologie, 49, 138171.CrossRefGoogle Scholar
Ercolini, A., 1965. Ricerche sull'orientamento astronomico di anfipodi litorali della zona equatoriale. IV. Compensazione differenziale giornaliera del moto azimutale del sole in una popolazione somala di Talorchestia martensii Weber. Redia, 49, 119128.Google Scholar
Geppetti, L. & Tongiorgi, P., 1967a. Nocturnal migration of Talitrus saltator (Montagu) (Crustacea-Amphipoda). Monitore Zoologico Italiano (Nuova Serie), 1, 3740.Google Scholar
Geppetti, L. & Tongiorgi, P., 1967b. Ricerche ecologiche sugli artropodi di una spiaggia sabbiosa del litorale tirrenico. II. Le migrazioni di Talitrus saltator (Montagu) (Crustacea-Amphipoda). Redia, 50, 309336.Google Scholar
Gould, J.L., Dyer, F.C. & Towne, W.F., 1985. Recent progress in the study of the dance language. Fortschritte der Zoologie, 31, 141160.Google Scholar
Marchionni, V., 1958–1962. Modificazione sperimentale della direzione innata di fuga in Talorchestia deshayesei Aud. (Crustacea Amphipoda). Bollettino dell'Istituto e Museo di Zoologia dell'Università di Torino, 6, 2939.Google Scholar
Papi, F., 1955. Experiments on the sense of time in Talitrus saltator (Montagu) (Crustacea-Amphipoda). Experientia, 11, 201.CrossRefGoogle ScholarPubMed
Papi, F. & Pardi, L., 1953. Ricerche sull'orientamento di Talitrus saltator (Montagu) (Crustacea-Amphipoda). II. Sui fattori che regolano la variazione dell'angolo di orientamento nel corso del giorno. L'orientamento di notte. L'orientamento diurno di altre popolazioni. Zeitschrift für Vergleichende Physiologie, 35, 490518.CrossRefGoogle Scholar
Pardi, L., 1957. L'orientamento astronomico degli animali: risultati e problemi attuali. Bollettino di Zoologia, 24, 473523.CrossRefGoogle Scholar
Pardi, L., Ercolini, A., Ferrara, F., Scapini, F. & Ugolini, A., 1984. Orientamento zonale solare e magnetico in crostacei anfipodi litorali di regioni equatoriali. Atti Accademia Nazionale dei Lincei Rendiconti Classe Scienze Fisiche Matematiche e Naturali, 76, 312320.Google Scholar
Pardi, L. & Grassi, M., 1955. Experimental modifications of direction-finding in Talitrus saltator (Montagu) and Talorchestia deshayesei (Aud.) (Crustacea-Amphipoda). Experientia, 11, 202.CrossRefGoogle ScholarPubMed
Pardi, L. & Papi, F., 1953. Ricerche sull'orientamento di Talitrus saltator (Montagu) (Crustacea-Amphipoda). I. L'orientamento durante il giorno in una popolazione del litorale tirrenico. Zeitschrift für Vergleichende Physiologie, 35, 459489.CrossRefGoogle Scholar
Pardi, L., Ugolini, A., Faqi, A.S., Scapini, F. & Ercolini, A., 1988. Zonal recovery in equatorial sandhoppers: interaction between magnetic and solar orientation. In Behavioral adaptation to intertidal life (ed. G., Chelazzi and M., Vannini), pp. 7992. New York: Plenum Press. [NATO ASI Series A: Life Sciences, vol. 151.]CrossRefGoogle Scholar
Renner, M., 1960. The contribution of the Honey Bee to the study of time-sense and astronomical orientation. Cold Spring Harbor Symposia on Quantitative Biology. Biological Clocks, 25, 361367.CrossRefGoogle Scholar
Scapini, F. & Quochi, G., 1992. Orientation in sandhoppers from Italian populations: have they magnetic orientation ability? Bollettino di Zoologia, 59, 437442.CrossRefGoogle Scholar
Schmidt-Koenig, K., 1975. Migration and homing in animals. Berlin: Springer Verlag.CrossRefGoogle Scholar
Schone, H., 1984. Spatial orientation. The spatial control of behavior in animals and man. Princeton: Princeton University Press.CrossRefGoogle Scholar
Ugolini, A., 1993. Solar and magnetic compass in equatorial sandhoppers: equinoctial experiments. In International Conference of The Royal Institute of Navigation. Orientation and navigation. Birds, humans and other animals. Oxford: The Royal Institute of Navigation. [Royal Institute of Navigation Paper, no. 28.]Google Scholar
Ugolini, A. & Pardi, L., 1992. Equatorial sandhoppers do not have a good clock. Naturwissenschaften, 79, 279281.CrossRefGoogle Scholar
Ugolini, A., Scapini, F., Beugnon, G. & Pardi, L., 1988. Learning in zonal orientation of sandhoppers. In Behavioral adaptations to intertidal life (ed. G., Chelazzi and M., Vannini), pp. 105118. New York: Plenum Press. [NATO ASI Series A: Life Sciences, vol. 151].Google Scholar
Wallraff, H.G., 1981. Clock-controlled orientation in space. In Handbook of behavioral neurobiology, vol. 4 (ed. J., Aschoff), pp. 299309. New York: Plenum Press.Google Scholar
Wehner, R. & Müller, M., 1993. How do ants acquire their celestial ephemeris function? Naturwissenschaften, 80, 331333.CrossRefGoogle Scholar
Williams, J.A., 1980a. Environmental influence on the locomotor activity rhythm of Talitrus saltator (Crustacea: Amphipoda). Marine Biology, 57, 716.CrossRefGoogle Scholar
Williams, J.A., 1980b. The light-response rhythm and seasonal entrainment of the endogenous circadian locomotor rhythm of Talitrus saltator (Crustacea: Amphipoda). Journal of the Marine Biological Association of the United Kingdom, 60, 773785.CrossRefGoogle Scholar
Williams, J.A., 1980c. The effect of dusk and dawn on the locomotor activity rhythm of Talitrus saltator (Crustacea: Amphipoda). Journal of Experimental Marine Biology and Ecology, 42, 285297.CrossRefGoogle Scholar