Skip to main content Accessibility help

Occurrence and characterization of pearls from oysters of the genus Crassostrea

  • Frederico M. Batista (a1) (a2), Ana Grade (a1), Deborah M. Power (a2), Francisco Ruano (a3) and Elizabeth M. Harper (a4)...


The occurrence of pearls in the ‘true’ oysters, the Ostreioidea, is poorly documented despite being the most produced mollusc species in the world. Oysters of the Crassostrea genus were collected in two different sites in southern Portugal where both Crassostrea angulata and C. gigas are present, namely in: (1) the Ria Formosa lagoon where pearls were not observed (N = 446); and (2) the Guadiana estuary where pearls were found in 12 out of the 798 oysters analysed. The pearls were located mainly at the edge of the right mantle lobe in the inhalant chamber and their maximum length ranged from 0.9 to 5.5 mm. Almost all the pearls had a white-cream colouration with the exception of two pearls that had a black-brown colour. X-ray diffraction analysis of one pearl showed that it was entirely calcitic with no traces of either aragonite or vaterite. The pearls observed were therefore non-nacreous pearls. Scanning electron microscopy (SEM) revealed a diversity of microstructures including prismatic, foliae-like sheets and blocky textures, i.e. highly reminiscent of the host oyster shell microstructures. Parasites (e.g. parasitic copepods, Haplosporidium-like plasmodia) and signs of diseases (e.g. foot disease) were observed in some of the oysters analysed, but they were not associated with the occurrence of pearls. The present work is one of the few studies on the occurrence of natural pearls in ‘true’ oysters and to our knowledge the first description of their microstructure by SEM.


Corresponding author

Correspondence should be addressed to: F.M. Batista, Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal Email:


Hide All
Ambariyanto, A. and Seed, R. (1991) The infestation of Mytilus edulis Linnaeus by Polydora ciliate (Johnston) in the Conwy estuary, North Wales. Journal of Molluscan Studies 57, 413424.
Awaji, M. and Machii, A. (2011) Fundamental studies on in vivo and in vitro pearl formation – contribution of outer epithelial cells of pearl oyster mantle and pearl sacs. Aqua-BioScience Monographs 4, 139.
Batista, F.M., Boudry, P., dos Santos, A., Renault, T. and Ruano, F. (2009) Infestation of the cupped oysters Crassostrea angulata, C. gigas and their first generation hybrids by the copepod Myicola ostreae: differences in susceptibility and host response. Parasitology 136, 537543.
Bieler, R., Mikkelsen, P.M., Collins, T.M., Glover, E.A., González, V.L., Graf, D.L., Harper, E.M., Healy, J., Kawauchi, G.Y., Sharma, P., Staubach, P.S., Strong, E.E., Taylor, J.D., Tëmkin, I., Zardus, J.D., Clark, S., Guzmán, A., McIntyre, E., Sharp, P. and Giribet, G. (2014) Investigating the bivalve tree of life – an exemplar-based approach combining molecular and novel morphological characters. Invertebrate Systematics 28, 32115.
Cuif, J.P., Dauphin, Y., Howard, L., Nouet, J., Rouzière, S. and Salomé, M. (2011) Is the pearl layer a reversed shell? A re-examination of the theory of pearl formation through physical characterizations of pearl and shell development stages in Pinctada margaritifera . Aquatic Living Resources 23, 277284.
Esteban-Delgado, F.J., Harper, E.M., Checa, A.G. and Rodrigez-Navarro, A.B. (2008) Origin and expansion of foliated microstructure in pteriomorph bivalves. Biological Bulletin 214, 153165.
Fernandes, F.C. and Seed, R. (1983) The incidence of pearls in populations of the blue mussel, Mytilus edulis L., from North Wales. Journal of Molluscan Studies 49, 107115.
Garel, E., Pinto, L., Santos, A. and Ferreira, O. (2009) Tidal and river discharge forcing upon water and sediment circulation at a rock-bound estuary (Guadiana estuary, Portugal). Estuarine, Coastal and Shelf Science 84, 269281.
Landman, N.H., Mikkelsen, P.M., Bieler, R. and Bronson, B. (2001) Pearls – a natural history. New York, NY: Harry N. Abrams, Inc.
Ma, Y., Berland, S., Andrieu, J.-P., Feng, Q. and Bedouet, L. (2013) What is the difference in organic matrix of aragonite vs. vaterite polymorph in natural shell and pearl? Study of the pearl-forming freshwater bivalve mollusc Hyriopsis cumingii . Materials Science and Engineering C 33, 15211529.
McGinty, E.L., Zenger, K.R., Jones, D.B. and Jerry, D.R. (2012) Transcriptome analysis of biomineralisation-related genes within the pearl sac: host and donor oyster contribution. Marine Genomics 5, 2733.
Moore, R.C. (1969) Treatise on invertebrate paleontology. Part N, Mollusca 6, Bivalvia, Volume 1–2. Boulder, CO & Lawrence, KS: Geological Society of America & University of Kansas Press.
Murty, V.S. (1976) Note on the natural pearl of Placenta placenta (Linnaeus). Indian Journal of Fisheries 23, 243346.
Nagai, K. (2013) A history of the cultured pearl industry. Zoological Science 30, 783793.
Neumeier, U. and Ciavola, P. (2004) Flow resistance and associated sedimentary processes in a Spartina maritima salt-marsh. Journal of Coastal Research 20, 435447.
Newton, A. and Mudge, S.M. (2003) Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuarine, Coastal and Shelf Science 56, 113.
Pérez-Huerta, A., Cuif, J.-P., Dauphin, Y. and Cusack, M. (2014) Crystallography of calcite in pearls. European Journal of Mineralogy 26, 507516.
Sindermann, C.J. and Rosenfield, A. (1967) Principal diseases of commercially important marine bivalve mollusca and crustacea. Fishery Bulletin 66, 335385.
Soldati, A.L., Jacob, D.E., Wehrmeister, U. and Hofmeister, W. (2008) Structural characterization and chemical composition of aragonite and vaterite in freshwater pearls. Mineralogical Magazine 72, 579592.
Strack, E. (2006) Pearls. Stuttgart: Ruehle-Diebener-Verlag, 707 pp.
Suzuki, M., Saruwatari, K., Kogure, T., Yamamoto, Y., Nishimura, T., Kato, T. and Nagasawa, H. (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325, 13881390.
Taylor, J. and Strack, E. (2008) Pearl production. In Southgate, P.C. and Lucas, J.S. (eds) The pearl oyster. Amsterdam: Elsevier, pp. 272302.
Zwaan, J.C. and Groenenboom, P. (2014) Natural pearls from edible ‘true oysters’ in Zeeland, the Netherlands. Journal of Gemmology 34, 150155.


Type Description Title
Supplementary materials

Batista supplementary material
Table S1

 Word (13 KB)
13 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed