Skip to main content Accessibility help

Niche structure of marine sponges from temperate hard-bottom habitats within Gray's Reef National Marine Sanctuary

  • Christopher J. Freeman (a1), Cole G. Easson (a2) and David M. Baker (a3)


Many species of marine sponges on tropical reefs host abundant and diverse symbiont communities capable of varied metabolic pathways. While such communities may confer a nutritional benefit to some hosts (termed High Microbial Abundance (HMA) sponges), other sympatric species host only sparse symbiont communities (termed Low Microbial Abundance (LMA) sponges) and obtain a majority of their C and N from local sources. Sponge communities are widespread across large latitudinal gradients, however, and recent evidence suggests that these symbioses may also extend beyond the tropics. We investigated the role that symbionts play in the ecology of sponges from the temperate, hard-bottom reefs of Gray's Reef National Marine Sanctuary by calculating the niche size (as standard ellipse area (SEAc)) and assessing the relative placement of five HMA and four LMA sponge species within bivariate (δ13C and δ15N) isotopic space. Although photosymbiont abundance was low across most of these species, sponges were widespread across isotopic niche space, implying that microbial metabolism confers an ecological benefit to temperate sponges by expanding host metabolic capability. To examine how these associations vary across a latitudinal gradient, we also compared the relative placement of temperate and tropical conspecifics within isotopic space. Surprisingly, shifts in sponge δ13C and δ15N values between these regions suggest a reduced reliance on symbiont-derived nutrients in temperate sponges compared with their tropical conspecifics. Despite this, symbiotic sponges in temperate systems likely have a competitive advantage, allowing them to grow and compete for space within these habitats.


Corresponding author

Correspondence should be addressed to:C.J. Freeman, Smithsonian Marine Station, Fort Pierce, FL, USA email:


Hide All
Becerro, M.A. (2008) Quantitative trends in sponge ecology research. Marine Ecology 29, 167177.
Bell, J.J. (2007) The ecology of sponges in Lough Hyne Marine Nature Reserve (south-west Ireland): past, present and future perspectives. Journal of the Marine Biological Association of the United Kingdom 87, 16551668.
Chollett, I., Stoyle, G. and Box, S. (2014) Honduran Miskito Cays: among the last unexplored reef systems in the Caribbean. Coral Reefs 33, 155.
Deegan, L.A. and Garritt, R.H. (1997) Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147, 3147.
Easson, C.G. and Thacker, R.W. (2014) Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Frontiers in Microbiology 5, 111.
Erwin, P.M., López-Legentil, S. and Turon, X. (2012) Ultrastructure, molecular phylogenetics, and chlorophyll a content of novel cyanobacterial symbionts in temperate sponges. Microbial Ecology 64, 771783.
Erwin, P.M. and Thacker, R.W. (2007) Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. Journal of the Marine Biological Association of the United Kingdom 87, 16831692.
Erwin, P.M. and Thacker, R.W. (2008) Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Molecular Ecology 17, 29372947.
Freeman, C.J., Easson, C.G. and Baker, D.M. (2014) Metabolic diversity and niche structure in sponges from the Miskito Cays, Honduras. Peer J 2, e695. doi: 10.7717/peerj.695.
Freeman, C.J., Gleason, D.F., Ruzicka, R., van Soest, R.W.M., Harvey, A.W. and Mcfall, G. (2007) A biogeographic comparison of sponge fauna from Gray's Reef National Marine Sanctuary and other hard-bottom reefs of coastal Georgia, USA. In Custódio, M.R., Lôbo-Hajdu, G., Hajdu, E. and Muricy, G. (eds) Proceedings of the Seventh International Sponge Symposium, Búzios, Brazil, May 2006. Porifera research: biodiversity, innovation, and sustainability. Série Livros 28. Rio de Janeiro: Museu Nacional, pp. 319325.
Freeman, C.J. and Thacker, R.W. (2011) Complex interactions between marine sponges and their symbiotic microbial communities. Limnology and Oceanography 56, 15771586.
Freeman, C.J., Thacker, R.W., Baker, D.M. and Fogel, M. (2013) Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME Journal 7, 11161125.
Fry, B. (2006) Stable isotope ecology. New York: Springer.
Gloeckner, V., Wehrl, M., Moitinho-Silva, L., Gernert, C., Schupp, P., Pawlik, J.R., Lindquist, N.L., Erpenbeck, D., Wörheide, G. and Hentschel, U. (2014) The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biological Bulletin 227, 7888.
Hopkinson, C.S., Fallon, R.D., Jansson, B. and Schubauer, J.P. (1991) Community metabolism and nutrient cycling at Gray's Reef, a hard bottom habitat in the Georgia Bight. Marine Ecology Progress Series 73, 105120.
Jackson, A.L., Inger, R., Parnell, A. and Bearhop, S. (2011) Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80, 595602.
Knowlton, N. and Jackson, J.B.C. (1994) New taxonomy and niche partitioning on coral reefs: jack of all trades or master of some? Trends in Ecology and Evolution 9, 79.
Knowlton, N. and Rohwer, F. (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. American Naturalist 162, S51S62.
Lamb, K. and Swart, P.K. (2008) The carbon and nitrogen isotopic values of particulate organic material from the Florida Keys: a temporal and spatial study. Coral Reefs 27, 351362.
Layman, C.A., Araujo, M.S., Boucek, R., Harrison, E., Jud, Z.R., Matich, P., Hammerschlag-Peyer, C.M., Rosenblatt, A.E., Vaudo, J.J., Yeager, L.A., Post, D. and Bearhop, S. (2012) Applying stable isotopes to examine food web structure: an overview of analytical tools. Biological Reviews 87, 542562.
Layman, C.A., Arrington, D.A., Montaña, C.G. and Post, D.M. (2007) Can stable isotope ratios provide quantitative measures of trophic diversity within food webs? Ecology 88, 4248.
Lemloh, M., Fromont, J., Brümmer, F. and Usher, K.M. (2009) Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecology 9, 4.
Maldonado, M., Ribes, M. and van Duyl, F.C. (2012) Nutrient fluxes through sponges: biology, budgets, and ecological implications. Advances in Marine Biology 62, 113182.
Michener, R.H. and Kaufman, L. (2007) Stable isotope ratios as tracers in marine aquatic food webs: an update. In Michener, R.H. and Lajtha, K. (eds) Stable isotopes in ecology and environmental science. 2nd edition. Oxford: Blackwell Publishing, pp. 238282.
Mohamed, N.M., Colman, A.S., Tal, Y. and Hill, R.T. (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environmental Microbiology 10, 29102921.
Moran, N.A. (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proceedings of the National Academy of Sciences USA 104, 86278633.
Moya, A., Peretó, J., Gil, R. and Latorre, A. (2008) Learning how to live together: genomic insights into prokaryote-animal symbioses. Nature Review Genetics 9, 218229.
Muller-Parker, G. and Davy, S.K. (2001) Temperate and tropical algal-sea anemone symbioses. Invertebrate Biology 120, 104123.
Muscatine, L. and Cernichiari, E. (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biological Bulletin 137, 506523.
Muscatine, L. and Porter, J.W. (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27, 454460.
Newsome, S.D., Del Rio, C.M., Bearhop, S. and Phillips, D.L. (2007) A niche for isotopic ecology. Frontiers in Ecology and the Environment 5, 429436.
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. and Wagner, H. (2014) Vegan: community ecology package. Available at:
Roberts, D.E., Cummins, S.P., Davis, A.R. and Pangway, C. (1999) Evidence for symbiotic algae in sponges from temperate coastal reefs in New South Wales, Australia. Memoirs of the Queensland Museum 44, 493497.
Ruzicka, R. and Gleason, D.F. (2009) Sponge community structure and anti-predator defenses on temperate reefs of the South Atlantic Bight. Journal of Experimental Marine Biology and Ecology 380, 3646.
Southwell, M.W., Popp, B.N. and Martens, C.S. (2008) Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Marine Chemistry 108, 96108.
Taylor, M.W., Radax, R., Steger, D. and Wagner, M. (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews 71, 295347.
Thacker, R.W. and Freeman, C.J. (2012) Sponge-microbe symbioses: recent advances and new directions. Advances in Marine Biology 62, 57111.
Thurber, A.R. (2007) Diets of Antarctic sponges: links between the pelagic microbial loop and benthic metazoan food web. Marine Ecology Progress Series 351, 7789.
Turner, T.F., Collyer, M.L. and Krabbenhoft, T.J. (2010) A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology 91, 22272233.
Usher, K.M. (2008) The ecology and phylogeny of cyanobacterial symbionts in sponges. Marine Ecology 29, 178192.
van Duyl, F.C., Moodley, L., Nieuwland, G., van Ijzerloo, L., van Soest, R.W.M., Houtekamer, M., Meesters, E.H. and Middelburg, J.J. (2011) Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints. Marine Biology 158, 16531666.
Vrijenhoek, R.C. (2010) Genetics and evolution of deep-sea chemosynthetic bacteria and their invertebrate hosts. In Kiel, S. (ed.) The vent and seep biota, Topics in Geobiology 33. Berlin: Springer, pp. 1550.
Webster, N.S., Negri, A.P., Munro, M.M. and Battershill, C.N. (2004) Diverse microbial communities inhabit Antarctic sponges. Environmental Microbiology 6, 288300.
Weisz, J.B. (2006) Measuring impacts of associated microbial communities on Caribbean reef sponges: searching for symbiosis. PhD thesis. University of North Carolina at Chapel Hill, North Carolina, USA.
Weisz, J.B., Hentschel, U., Lindquist, N. and Martens, C.S. (2007) Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Marine Biology 152, 475483.
Wilkinson, C.R. (1983) Net primary productivity in coral reef sponges. Science 219, 410412.


Type Description Title
Supplementary materials

Freeman supplementary material
Supplementary Table 1

 Word (116 KB)
116 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed