Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T10:48:08.156Z Has data issue: false hasContentIssue false

Muscle Proteins of the Coelacanth Latimeria Chalumnae Smith

Published online by Cambridge University Press:  11 May 2009

G. Hamoir
Affiliation:
Laboratory of General Biology, University of Liège
A. Piront
Affiliation:
Laboratory of General Biology, University of Liège
Ch. Gerday
Affiliation:
Laboratory of General Biology, University of Liège
P. R. Dando
Affiliation:
Plymouth Laboratory

Extract

Although the anatomy of the coelacanth muscles has been examined very thoroughly, their protein composition has, until recently, not been investigated. Thanks, however, to the 1972 British–French–American expedition to the Comores, frozen material has been made available and some results on myoglobin and four glycolytic enzymes have already been published. We have carried out a comparison of the sarcoplasmic proteins of red and white muscle by starch-gel electrophoresis. The ninhydrin-positive dialysable constituents and the myofibrillar proteins of white muscle have also been examined.

A few puzzling results obtained with the white muscle extracts have been related to the occurrence of o.1 M ammonia, due presumably to the splitting of urea by a bacterial urease, and to an alteration of the active thiol groups of GAPDH and PK. If due account is taken of these unusual post-mortem changes, the extractability of the proteins and their properties are strikingly similar to those of teleosteans. The comparison of the sarcoplasmic proteins of white and red muscle by starch-gel electrophoresis revealed also that the differentiation observed in the coelacanth was similar to that occurring in the carp. A study of the low-molecular-weight proteins, or parvalbumins, of white muscle and of the myofibrillar proteins also shows the expected differences between the two muscle types.

The only abnormal features observed in this study were the high concentration of parvalbumins, 1.5–2 times that found in other species examined, and the occurrence of an unusual globulin fraction which was easily extracted at ionic strength 0.5 and insoluble at ionic strength 0.35 and neutral pH.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, K., 1948. Tropomyosin: a new asymmetric protein component of the muscle fibril. Biochemical Journal, 43, 271–79.CrossRefGoogle ScholarPubMed
Benson, J. V. & Patterson, J. A., 1965 a. Accelerated chromatographic analysis of amino acids commonly found in physiological fluids on a spherical resin of specific design. Analytical Biochemistry, 13, 265–80.CrossRefGoogle ScholarPubMed
Benson, J. V. & Patterson, J. A., 1965 b. Accelerated automatic chromatographic analysis of amino acids on a spherical resin. Analytical Chemistry, 37, 1108–10.CrossRefGoogle ScholarPubMed
Bhushana, Rao K. S. P., Focant, B., Gerday, Ch. & Hamoir, G., 1969. Low molecular weight albumins of cod white muscle (Gadus callarias L.). Comparative Biochemistry and Physiology, 30, 3348.Google Scholar
Buttkus, H., 1966. Preparation and properties of trout myosin. Journal of the Fisheries Research Board of Canada, 23, 563–73.CrossRefGoogle Scholar
Capony, J. P., Ryden, L., Demaille, J. & Pechère, J. F., 1973. The primary structure of the major parvalbumin from hake muscle. European Journal of Biochemistry, 32, 97108.CrossRefGoogle ScholarPubMed
Chauvet, J. P. & Acher, R., 1972. Isolation of coelacanth (Latimeria chalumnae) myoglobin. FEBS Letters, 28, 1618.CrossRefGoogle ScholarPubMed
Chavin, W., 1972. Thyroid of the coelacanth, Latimeria chalumnae Smith. Nature, London, 239, 340.CrossRefGoogle ScholarPubMed
Connell, J. J., 1958. Studies on the protein of fish skeletal muscle. Biochemical Journal, 69, 512.CrossRefGoogle ScholarPubMed
Cowgill, U. M., Hutchinson, G. E. & Skinner, H. C. W., 1968. The elementary composition of Latimeria chalumnae Smith. Proceedings of the National Academy of Sciences of the United States of America, 60, 456–63.CrossRefGoogle ScholarPubMed
Czok, R. & Bucher, Th., 1960. Crystallized enzymes from the myogen of rabbit skeletal muscle. Advances in Protein Chemistry, 15, 315415.CrossRefGoogle ScholarPubMed
Dartnall, H. J. A., 1972. Visual pigment of the coelacanth. Nature, London, 239, 341.CrossRefGoogle ScholarPubMed
Fromageot, C. & Schneck, G., 1950. Le spectre ultra-violet du lysozyme; avec des considérations sur le spectre ultra-violet de divers acides aminés et de quelques-uns de leurs peptides. Biochimica et biophysica acta, 6, 113–22.CrossRefGoogle Scholar
Gerday, Ch. & Bhushana, Rao K. S. P., 1970. Tryptic peptide maps and terminal amino acid residues of low molecular weight proteins for the white muscles of Cyprinus carpio, Gadus callarias and Tilapia macrochir Boul. Comparative Biochemistry and Physiology, 36, 229–40.CrossRefGoogle ScholarPubMed
Gerday, Ch. & Teuwis, J. C., 1972. Isolation and characterization of the main parvalbumins from Raja clavata and Raja montagui white muscles. Biochimica et biophysica acta, 271, 320–31.CrossRefGoogle ScholarPubMed
Gornall, A. G., Bardawill, C. J. & David, M. M., 1949. Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177, 751–66.CrossRefGoogle ScholarPubMed
Gosselin-Rey, C., Hamoir, G. & Scopes, R. K., 1968. Localization of creatine kinase in the starch-gel and moving boundary electrophoretic patterns of fish muscle. Journal of the Fisheries Research Board of Canada, 25, 2711–14.CrossRefGoogle Scholar
Hamoir, G., 1955. Contribution à l'étude des proteines rnusculaires de poisson. Recherches sur le muscle strié de carpe. Archives internationales de physiologie et de biochimie, 63, 1151, Suppl.CrossRefGoogle Scholar
Hamoir, G., Focant, B. & Disteche, C., 1972. Proteinic criteria of differentiation of white, cardiac and various red muscles in carp. Comparative Biochemistry and Physiology, 41B, 665–74.Google ScholarPubMed
Hamoir, G. & Konosu, S., 1965. Carp myogens of white and red muscles. General composition and isolation of low-molecular-weight components of abnormal amino acid composition. Biochemical Journal, 96, 8597.CrossRefGoogle ScholarPubMed
Hamoir, G. & Laszt, L., 1962. La tropomyosine B de carotides de bovidé. Biochimica et biophysica acta, 59, 365–75.CrossRefGoogle Scholar
Hirs, C. H. W., 1956. The oxidation of ribonuclease with performic acid. Journal of Biological Chemistry, 219, 611–21.CrossRefGoogle ScholarPubMed
Horowitz, J. J. & Whitt, G. S., 1972. Journal of Experimental Zoology, 180, 1332.CrossRefGoogle Scholar
Hughes, G. M., 1972. Gills of a living coelacanth, Latimeria chalumnae. Experientia, 28, 1301.CrossRefGoogle Scholar
Hughes, G. M. & Itazawa, Y., 1972. The effect of temperature on the respiratory function of coelacanth blood. Experientia, 28, 1247.CrossRefGoogle ScholarPubMed
Jebsen, J. W. & Hamoir, G. 1958. Occurrence in plaice myosin of a low molecular weight protein of abnormal amino acid composition. Acta chemica scandinavica, 12, 351–52.CrossRefGoogle Scholar
Johnston, I. A., Frearson, N. & Goldspink, G., 1972. Myofibrillar ATPase activities of red and white myotomal muscles of marine fish. Experientia, 28, 713–14.CrossRefGoogle ScholarPubMed
Kolb, E. & Harris, J. I., 1972. Purification and properties of glycolytic-cycle enzymes from coelacanth (Latimeria chalumnae) muscle. Biochemical Journal, 130, 26.CrossRefGoogle ScholarPubMed
Kretsinger, R. H., Nockolds, C. E., Coffee, C. T. & Bradshaw, R. H., 1971. The structure of a calcium binding protein from carp muscle. Cold Spring Harbor Symposia on Quantitative Biology, 36, 217–21.CrossRefGoogle Scholar
Locket, N. A., 1972. Learning from an anachromistic fish. New Scientist, 54, 427–28.Google Scholar
Locket, N. A. & Griffith, R. W., 1972. Observations on a living coelacanth. Nature, London, 237, 175.CrossRefGoogle Scholar
Lutz, P. L. & Robertson, J. D., 1971. Osmotic constituents of the coelacanth Latimeria chalumnae Smith. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 141, 553–60.CrossRefGoogle Scholar
Martin, G. B. & Tarr, H. L. A., 1961. Phosphoglucomutase, phosphoribomutase and phosphoglucoisomerase of lingcool muscle. Canadian Journal of Biochemistry and Physiology, 139, 297308.CrossRefGoogle Scholar
Millot, J., 1955 a. First observations on a living coelacanth. Nature, London, 175, 362–63.CrossRefGoogle Scholar
Millot, J., 1955 b. The coelacanth. Scientific American, pp. 17.Google Scholar
Millot, J. & Anthony, J., 1958. Anatomie de Latimeria chalumnae, vol. 1. Paris: Centre National de la Recherche Scientifique.Google Scholar
Millot, J. & Anthony, J., 1965. Anatomie de Latimeria chalumnae, vol. 11. Paris: Centre National de la Recherche Scientifique.Google Scholar
Mills, G. L. & Taylaur, C. E., 1973. The distribution and composition of serum lipoproteins in the coelacanth (Latimeria). Comparative Biochemistry and Physiology, 44B, 1235–41.Google Scholar
Nevenzel, J. C., Rodegker, W., Mead, J. F. & Gordon, M. S., 1966. Lipids of the living coelacanth. Latimeria chalumnae. Science, N.Y. 152, 1753–55.CrossRefGoogle ScholarPubMed
Owen, J., Silberman, H. J. & Got, C., 1958. Detection of haemoglobin, haemoglobin-haptoglobin complexes and other substances with peroxidase activity after zone electrophoresis. Nature, London, 182, 1373.CrossRefGoogle ScholarPubMed
Pickford, G. E. & Grant, F. B., 1967. Serum osmolality in the coelacanth Latimeria chalumnae: Urea retention and ion regulation. Science, 155, 568–70.CrossRefGoogle ScholarPubMed
Piront, A. & Gerday, C., 1973. Parvalbumin V of the Cyprinidae Chondrostoma nasus L. white muscles. Purification and characterization. Comparative Biochemistry and Physiology (in the Press).CrossRefGoogle Scholar
Piront, A., Hamoir, G. & Crokaert, R., 1968. Proteinic composition of the low ionic strength extracts of Tilapia macrochir Boulenger white muscle. Archives Internationales de physiologie et de biochimie, 76, 125.CrossRefGoogle Scholar
Portzehl, H., Schramm, G. & Weber, H. H., 1950. Aktomyosin und seine Komponenten. Zeitschrift fiir Naturforschung, 5b, 6174.CrossRefGoogle Scholar
Rockstein, M. & Herron, P. W., 1951. Colorimetric determination of inorganic phosphate in microgram quantities. Analytical Chemistry, 23, 1500–1.CrossRefGoogle Scholar
Scheidegger, J. J., 1955. Une micro-méthode de l'immunoeléctrophorese. International Archives of Allergy and Applied Immunology, j, 103–10.CrossRefGoogle Scholar
Scopes, R. K., 1964. The influence of post-mortem conditions on the solubilities of muscle proteins. Biochemical Journal, 91, 201–7.CrossRefGoogle ScholarPubMed
Scopes, R. K., 1968. Methods for starch-gel electrophoresis of sarcoplasmic proteins. Biochemical Journal, 107, 139–50.CrossRefGoogle ScholarPubMed
Scopes, R. K., 1970. Characterization and study of sarcoplasmic proteins. In The Physiology and Biochemistry of Muscle as a Food (ed. Briskey, E. J., Cassens, R. G. and Marsh, B. B.), vol. 2. Madison: University of Wisconsin Press.Google Scholar
Svedberg, T. & Pedersen, K. O., 1940. The Ultracentrifuge. Oxford: Clarendon Press.Google Scholar
Syrovy, I., Gaspar-Godfroid, A. & Hamoir, G., 1970. Comparative study of the myosins from red and white muscles of the carp. Archives internationales de physiologie et de biochimie, 78, 919–34.CrossRefGoogle ScholarPubMed
Thomson, K. S., Gall, J. G. & Coggins, L. W., 1973. Nuclear DNA contents of coelacanth erythrocytes. Nature, London, 241, 126.CrossRefGoogle ScholarPubMed
Tiselius, A. & Kabat, E. A., 1939. An electrophoretic study of immune sera and purified antibody preparations. Journal of Experimental Medicine, 69, 119–31.CrossRefGoogle ScholarPubMed
Van Der Helm, H. J., 1962. Simplified method of demonstrating lactic dehydrogenase isoenzymes in serum. Clinica chimica acta, 7, 124–8.CrossRefGoogle ScholarPubMed
Wassarman, P. M., Watson, H. C. & Major, J. P., 1969. Reaction of the sulphydryl groups of lobster-muscle glyceraldehyde-3-phosphate dehydrogenase with organic mercurials. Biochimica et biophysical acta, 191, 19.CrossRefGoogle ScholarPubMed
Wieker, H. J. & Hess, B., 1972. Function of thiol groups in yeast pyruvate kinase. Hoppe-Seyler's Zeitschrift für physiologische Chemie, 353, 1887–93.CrossRefGoogle ScholarPubMed
Wood, S. C., Johansen, K. & Weber, R. E., 1972. Haemoglobin of the coelacanth. Nature, London, 239, 283–85.CrossRefGoogle Scholar