Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T18:25:30.183Z Has data issue: false hasContentIssue false

Habitat use in different life and moulting stages of Callinectes sapidus (Decapoda, Portunidae) in South Brazilian estuarine and marine environments

Published online by Cambridge University Press:  17 December 2019

Ileana Ortega*
Affiliation:
Laboratório de Crustáceos Decápodes. Universidade Federal de Rio Grande (FURG), Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Av. Itália, Km 78, Código Postal: 96201- 900Rio Grande, RS, Brasil
Christopher Fonseca Ibeiro
Affiliation:
Laboratório de Crustáceos Decápodes. Universidade Federal de Rio Grande (FURG), Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Av. Itália, Km 78, Código Postal: 96201- 900Rio Grande, RS, Brasil
Lucas Santos Rodrigues
Affiliation:
Laboratório de Crustáceos Decápodes. Universidade Federal de Rio Grande (FURG), Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Av. Itália, Km 78, Código Postal: 96201- 900Rio Grande, RS, Brasil
Marcos Alaniz Rodrigues
Affiliation:
Laboratório de Crustáceos Decápodes. Universidade Federal de Rio Grande (FURG), Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Av. Itália, Km 78, Código Postal: 96201- 900Rio Grande, RS, Brasil
Luiz Felipe Cestari Dumont
Affiliation:
Laboratório de Crustáceos Decápodes. Universidade Federal de Rio Grande (FURG), Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Av. Itália, Km 78, Código Postal: 96201- 900Rio Grande, RS, Brasil
*
Author for correspondence: Ileana Ortega, E-mail: ileanaortega@gmail.com

Abstract

The blue crab Callinectes sapidus is an important ecological and commercial species. It plays a fundamental role in the structure and function of coastal benthic food webs, with global catches of ~74,357 tons. This is the most exploited portunid species in Brazil. However, few studies about the ecology and population dynamics of C. sapidus have been published. This study aimed to analyse the preferred areas for the spatial distribution of juveniles and moulting individuals of C. sapidus in shallow areas of the Patos Lagoon estuary and the adjacent marine reproductive area, and their relation to water and sediment characteristics. Juveniles and moulting individuals preferred the embayment of the upper estuary, where the sediments are finer, with higher contents of organic matter and the presence of submerged vegetation. There was also a temporal variability in the abundance of juvenile size classes, with two marked increments of smaller individuals: (1) in late spring and summer and (2) in winter, indicating two recruitment peaks. Unusual environmental conditions in the summer of the first year, with an increase of fine sediments and organic matter, combined with low salinities in the adjacent marine area, allowed recruitment of individuals there. We suggest better attention to the embayment around the Marinheiros Island (considered here as upper estuary) for management and protection measures due to the overlapping of recruitment preferences of the blue crab, pink shrimp and fish species in this area.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, R, Hines, AH, Wolcott, TG, Wolcott, DL, Kramer, MA and Lipcius, RN (2005) The timing and route of movement and migration of post-copulatory female blue crabs, Callinectes sapidus (Rathbun, 1896), from the upper Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 319, 117128.CrossRefGoogle Scholar
Anderson, MJ (2005) PERMANOVA: A FORTRAN Computer Program for Permutational Multivariate Analysis of Variance. Auckland: Department of Statistics, University of Auckland.Google Scholar
Anderson, MJ and Millar, RB (2004) Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and Ecology 305, 191221.CrossRefGoogle Scholar
Baldwin, J and Johnsen, S (2011) Effects of molting on the visual acuity of the blue crab, Callinectes sapidus. Journal of Experimental Biology 214, 30553061.CrossRefGoogle ScholarPubMed
Barutot, RA, Vieira, RRR and Rieger, PJ (2001) Desenvolvimento juvenil de Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) em laboratório, a partir de megalopas coletadas no plâncton. Comunicações do Museu de Ciências e Tecnologia da PUCRS. Série zoologia 14, 2342.Google Scholar
Blackmon, DC and Eggleston, DB (2001) Factors influencing planktonic, post-settlement dispersal of early juvenile blue crabs (Callinectes sapidus Rathbun). Journal of Experimental Marine Biology and Ecology 257, 183203.CrossRefGoogle Scholar
Branco, JO and Fracasso, HAA (2004) Biologia populacional de Callinectes ornatus (Ordway) na Armação de Itapocoroy, Penha, Santa Catarina, Brasil. Revista Brasileira de Zoologia 21, 9196.CrossRefGoogle Scholar
Cafruni, AMS, Krieger, J and Seeliger, U (1978) Observação sobre Ruppia maritima L. no sul do Brasil. Atlântica, Rio Grande 3, 8590.Google Scholar
Calliari, LJ, Muehc, D, Hoefel, FG and Toldo, E Jr (2003) Morfodinâmica praial: uma breve revisão. Revista brasileira de oceanografia 51, 6378.CrossRefGoogle Scholar
Carrozzo, L, Potenza, L, Carlino, P, Costantini, ML, Rossi, L and Mancinelli, G (2014) Seasonal abundance and trophic position of the Atlantic blue crab Callinectes sapidus Rathbun 1896 in a Mediterranean coastal habitat. Rendiconti Lincei. Scienze Fisiche e Naturali 25, 201208.CrossRefGoogle Scholar
Chang, ES and Mykles, DL (2011) Regulation of crustacean molting: a review and our perspectives. General and Comparative Endocrinology 172, 323330.CrossRefGoogle ScholarPubMed
Clarke, KR, Somerfield, PJ and Chapman, MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330, 5580.CrossRefGoogle Scholar
Colares, IG and Seeliger, U (2006) Influência da luz sobre o crescimento e biomassa de Ruppia maritima L. em cultivo experimental. Acta Botanica Brasilica 20, 3136.CrossRefGoogle Scholar
Costa, CSB and Seeliger, U (1989) Vertical distribution and biomass allocation of Ruppia maritima L. in a southern Brazilian estuary. Aquatic Botany 33, 123129.CrossRefGoogle Scholar
Costa, CSB, Seelinger, U, Oliveira, CPL and Mazo, AMM (1997) Distribuição, funções e valores das marismas e pradarias submerses no estuário da Lagoa dos Patos (RS, Brasil). Atlântica Rio Grande 19, 6785.Google Scholar
Costa, MD, Possingham, HP and Muelbert, JH (2016) Incorporating early life stages of fishes into estuarine spatial conservation planning. Aquatic Conservation: Marine and Freshwater Ecosystems 26, 10131030.CrossRefGoogle Scholar
D'Incao, F (1991) Pesca e biologia de Penaeus paulensis na Lagoa dos Patos, RS. Atlântica 13, 159169.Google Scholar
Davies, BE (1974) Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America Journal 38, 150151.CrossRefGoogle Scholar
Dumont, LFC and D'Incao, F (2011) By-catch analysis of Argentinean prawn Artemesia longinaris (Decapoda: Penaeidae) in surrounding area of Patos Lagoon, southern Brazil: effects of different rainfall. Journal of the Marine Biological Association of the United Kingdom 91, 10591072.CrossRefGoogle Scholar
Epifanio, CE (2007) Biology of larvae. In Kennedy, VS and Cronin, LE (eds), The Blue Crab Callinectes sapidus. College Park, MD: Maryland Sea Grant College, pp. 513533.Google Scholar
Etherington, LL and Eggleston, DB (2003) Spatial dynamics of large-scale, multistage crab (Callinectes sapidus) dispersal: determinants and consequences for recruitment. Canadian Journal of Fisheries and Aquatic Sciences 60, 873887.CrossRefGoogle Scholar
FAO (2019) Species fact sheets: Callinectes sapidus. Available at http://www.fao.org/fishery/species/2632/en (Accessed 6 January 2019).Google Scholar
Fernandes, EHL, Dyer, KR, Möller, OO and Niencheski, LFH (2002) The Patos lagoon hydrodynamic during an El Niño event (1998). Continental Shelf Research 22, 16991713.CrossRefGoogle Scholar
Fernandes, EHL, Dyer, KR and Möller, OO (2005) Spatial gradients in the flow of Southern Patos Lagoon. Journal of Coastal Research 214, 759769.CrossRefGoogle Scholar
Ferreira, LS, Barros, A, Barutot, RA and D´Incao, F (2011) Comparação da dieta natural do siri-azul Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) em dois locais no Estuário da Lagoa dos Patos, RS, Brasil. Atlântica Rio Grande 33, 115122.CrossRefGoogle Scholar
Galil, B (2000) A sea under siege – alien species in the Mediterranean. Biological Invasions 2, 177186.CrossRefGoogle Scholar
Garcia, AM, Vieira, JP and Winemiller, KO (2001) Dynamics of the shallow-water fish assemblage of the Patos Lagoon estuary (Brazil) during cold and warm ENSO episodes. Journal of Fish Biology 59, 12181238.CrossRefGoogle Scholar
Garcia, AM, Vieira, JP, Winemiller, KO and Grimm, AM (2004) Comparison of 1982–1983 and 1997–1998 El Niño effects on the shallow-water fish assemblage of the Patos Lagoon Estuary (Brazil). Estuaries 27, 905914.CrossRefGoogle Scholar
Garcia, L, Pinya, S, Colomar, V, París, T, Puig, M, Rebassa, M and Mayol, J (2018) The first recorded occurrences of the invasive crab Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) in coastal lagoons of the Balearic Islands (Spain). BioInvasions Records 7, 191196.CrossRefGoogle Scholar
Graça-Lopes, R, Puzzi, A, Severino-Rodrigues, E, Bartolotto, AS, Guerra, DSF and Figueiredo, KTB (2002) Comparação entre a produção de camarão sete-barbas e de fauna acompanhante pela frota de pequeno porte sediada na praia de Pereque, Estado de São Paulo, Brasil. Boletim do Instituto de Pesca 28, 189194.Google Scholar
Guerin, JL and Stickle, WB (1992) Effects of salinity gradients on the tolerance and bioenergetics of juvenile blue crabs (Callinectes sapidus) from waters of different environmental salinities. Marine Biology 114, 391396.CrossRefGoogle Scholar
Heck, KL Jr, Coen, LD and Morgan, SG (2001) Pre-and post-settlement factors as determinants of juvenile blue crab Callinectes sapidus abundance: results from the north-central Gulf of Mexico. Marine Ecology Progress Series 222, 163176.CrossRefGoogle Scholar
Hines, AH (2007) Ecology of juvenile and adult blue crabs. In Kenney, VS and Cronin, E (eds), Biology of the Blue Crab. College Park, MD: Maryland Sea Grant Program, pp. 575665.Google Scholar
Hines, AH, Lipicius, RN and Haddon, AM (1987) Population dynamics and habitat partitioning by size, sex, and molt stage of blue crabs Callinectes sapidus in a subestuary of central Chesapeake Bay. Marine Ecology Progress Series 36, 5564.CrossRefGoogle Scholar
Huang, S, Wang, J, Yue, W, Chen, J, Gaughan, S, Lu, W, Lu, G and Wang, C (2015) Transcriptomic variation of hepatopancreas reveals the energy metabolism and biological processes associated with molting in Chinese mitten crab, Eriocheir sinensis. Scientific Reports 5, 14015.CrossRefGoogle ScholarPubMed
Johnson, E and Eggleston, D (2010) Population density, survival and movement of blue crabs in estuarine salt marsh nurseries. Marine Ecology Progress Series 407, 135147.CrossRefGoogle Scholar
Kalikoski, DC and Vasconcellos, M (2012) Case Study of the Technical, Socio-Economic and Environmental Conditions of Small-Scale Fisheries in the Estuary of Patos Lagoon, Brazil. Rome: FAO.Google Scholar
Kalikoski, DC and Vasconcellos, M (2013) Estudo das condições técnicas, econômicas e ambientais da pesca de pequena escala no estuário da Lagoa dos Patos, Brasil: uma metodologia de avaliação (Case study of the technical, socio-economic and environmental conditions of small-scale fisheries in the estuary of Patos Lagoon, Brazil: a methodology for assessment). Rome: FAO, Circular de Pesca e Aquicultura. No.1075.Google Scholar
Kennedy, VS and Cronin, LE (eds) (2007) The Blue Crab: Callinectes sapidus. College Park, MD: Maryland Sea Grant College, University of Maryland.Google Scholar
Kinsey, ST and Lee, BC (2003) The effects of rapid salinity change on in vivo arginine kinase flux in the juvenile blue crab, Callinectes sapidus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 135, 521531.CrossRefGoogle ScholarPubMed
Lacerda, ALF, Kersanach, R, Cortinhas, MCS, Prata, PFS, Dumont, LFC, Proietti, MC, Maggioni, R and D'Incao, F (2016) High connectivity among blue crab (Callinectes sapidus) populations in the Western South Atlantic. PLoS ONE 11, e0153124.CrossRefGoogle ScholarPubMed
Lanari, M and Copertino, M (2016) Drift macroalgae in the Patos Lagoon Estuary (southern Brazil): effects of climate, hydrology and wind action on the onset and magnitude of blooms. Marine Biology Research 31, 112.Google Scholar
Lipcius, RN, Seitz, RD, Seebo, MS and Colon-Carrion, D (2005) Density, abundance and survival of the blue crab in seagrass and unstructured salt marsh nurseries of Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 319, 6980.CrossRefGoogle Scholar
Lipcius, RN, Eggleston, DB, Heck, KL Jr, Seitz, RD and van Montfrans, J (2007) Ecology of postlarval and young juvenile blue crabs. In Kennedy, VS and Cronin, LE (eds), The Blue Crab: Callinectes sapidus. College Park, MD: Maryland Sea Grant College, pp. 535564.Google Scholar
Mancinelli, G, Chainho, P, Cilenti, L, Falcod, S, Kapiris, K, Katselis, G and Ribeiro, F (2017) The Atlantic blue crab Callinectes sapidus in southern European coastal waters: distribution, impact and prospective invasion management strategies. Marine Pollution Bulletin 119, 511.CrossRefGoogle ScholarPubMed
Mazo, AMM (1994) Distribuição e biomassa da fanerógama submerse Ruppia maritima L. no estuário da Lagoa dos Patos, Rio Grande, RS, Brasil. Tese de Mestrado, Universidade Federal do Rio Grande, Rio Grande. 81 pp.Google Scholar
Mendonça, JT, Verani, JR and Nordi, N (2010) Evaluation and management of blue crab Callinectes sapidus (Rathbun, 1896) (Decapoda – Portunidae) fishery in the Estuary of Cananéia, Iguape and Ilha Comprida, São Paulo, Brazil. Brazilian Journal of Biology 70, 3745.CrossRefGoogle ScholarPubMed
Minello, TJ, Able, KW, Weinstein, MP and Hays, CG (2003) Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through metaanalysis. Marine Ecology Progress Series 246, 3959.CrossRefGoogle Scholar
Möller, OO and Fernandes, E (2010) Hidrologia e Hidrodinamica. In Seelinger, U and Odebrecht, C (eds), O Estuario da Lagoa dos Patos: Um seculo de transformações. Rio Grande: FURG, pp. 1730.Google Scholar
Möller, OO, Castaing, P, Salomon, JC and Lazure, P (2001) The influence of local and non-local forcing effects on the subtidal circulation of Patos Lagoon. Estuaries 24, 297311.CrossRefGoogle Scholar
Möller, OO, Castello, JP and Vaz, AC (2009) The effect of river discharge and winds on the interannual variability of the pink shrimp Farfantepenaeus paulensis production in Patos Lagoon. Estuaries and Coasts 32, 787796.CrossRefGoogle Scholar
Mont'Alverne, R, Moraes, LE, Rodrigues, FL and Vieira, JP (2012) Do mud deposition events on sandy beaches affect surf zone ichthyofauna? A southern Brazilian case study. Estuarine, Coastal and Shelf Science 102–103, 116125.CrossRefGoogle Scholar
Nehring, S (2011) Invasion history and success of the American blue crab Callinectes sapidus in European and adjacent waters. In Galil, B, Clark, P and Carlton, J (eds), In the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and Impacts, vol. 6. Dordrecht: Springer, pp. 607624.CrossRefGoogle Scholar
NOAA (2017) Historical el nino/La nina episodes (1950-present). Available at http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (Accessed 12 May 2017).Google Scholar
Noleto-Filho, EM, Pucciarelli, P and Dumont, LFC (2017) Spatial and temporal variation in juvenile size distribution of the pink shrimp (Penaeus paulensis) in the Patos Lagoon Estuary, Brazil. Marine Biology Research 13, 6273.CrossRefGoogle Scholar
Oliveira, A, Pinto, TK, Santos, DPD and D'Incao, F (2006) Dieta natural do siri-azul Callinectes sapidus (Decapoda, Portunidae) na região estuarina da Lagoa dos Patos, Rio Grande, Rio Grande do Sul, Brasil. Iheringia Serie Zoologica 96, 305313.CrossRefGoogle Scholar
Pile, AJ, Lipcius, RN, van Montfrans, J and Orth, RJ (1996) Density-dependent settler-recruit-juvenile relationships in blue crabs. Ecological Monographs 66, 277300.CrossRefGoogle Scholar
Posey, MH, Alphin, TD, Harwell, H and Allen, B (2005) Importance of low salinity areas for juvenile blue crabs, Callinectes sapidus Rathbun, in river-dominated estuaries of southeastern United States. Journal of Experimental Marine Biology and Ecology 319, 81100.CrossRefGoogle Scholar
Possamai, B, Vieira, JP, Grimm, AM and Garcia, AM (2018) Temporal variability (1997–2015) of trophic fish guilds and its relationships with El Niño events in a subtropical estuary. Estuarine, Coastal and Shelf Science 202, 145154.CrossRefGoogle Scholar
Potter, IC and Lestang, SDE (2000) Biology of the blue swimmer crab Portunus pelagicus in Leschenault Estuary and Koombana Bay, south-western Australia. Journal of the Royal Society of Western Australia 83, 443458.Google Scholar
Reis, EG and D'Incao, F (2000) The present status of artisanal fisheries of extreme Southern Brazil: an effort towards community-based management. Ocean & Coastal Management 43, 585595.CrossRefGoogle Scholar
Reyns, NB and Eggleston, DB (2004) Environmentally-controlled, density-dependent secondary dispersal in a local estuarine crab population. Oecologia 140, 280288.CrossRefGoogle Scholar
Reyns, NB, Eggleston, DB and Leuttich, RA Jr (2006) Secondary dispersal of early juvenile blue crabs within a wind-driven estuary. Limnology and Oceanography 51, 19821995.CrossRefGoogle Scholar
Rezende, GA, Neunfeld, AL, Estima, SC and Dumont, LFC (2015) Size structure of the pink shrimp, Farfantepenaeus paulensis (Pérez-Farfante, 1967) (Decapoda: Penaeoidea), in a subtropical estuary: an assessment motivated by demand from fishermen. Pan-American Journal of Aquatic Sciences 10, 105115.Google Scholar
Rodrigues, MA and D'Incao, F (2008) Growth comparison between Callinectes sapidus (Crustacea, Decapoda, Portunidae) collected on the field and maintained under controlled conditions. Iheringia, Série Zoologia 98, 372378.CrossRefGoogle Scholar
Rodrigues, MA and D'Incao, F (2014) Biologia reprodutiva do siri-azul, Callinectes sapidus no Estuário da Lagoa dos Patos, RS, Brasil. Boletim do Instituto de Pesca, São Paulo 40, 223236.Google Scholar
Rodrigues, MA, Ortega, I and D'Incao, F (2019) The importance of shallow areas as nursery grounds for the recruitment of blue crab (Callinectes sapidus) juveniles in subtropical estuaries of Southern Brazil. Regional Studies in Marine Science 25, 100492.CrossRefGoogle Scholar
Ruas, VM (2015) Abundância de Farfantepenaeus paulensis (Pérez-Farfante, 1967) e captura incidental de Callinectes sapidus Rathbun 1896 no estuário da Lagoa dos Patos, RS (PhD thesis). Universidade Federal do Rio Grande, Rio Grande, Brazil.Google Scholar
Ruas, VM, Rodrigues, MA, Dumont, LFC and D'Incao, F (2014) Habitat selection of the pink shrimp Farfantepenaeus paulensis and the blue crab Callinectes sapidus in an estuary in southern Brazil: influence of salinity and submerged seagrass meadows. Nauplius 22, 113125.CrossRefGoogle Scholar
Ruas, VM, Becker, C and D'Incao, F (2017) Evaluation of the blue crab Callinectes sapidus Rathbun, 1896 bycatch in artisanal fisheries in Southern Brazil. Brazilian Archives of Biology and Technology 60, e17160335.CrossRefGoogle Scholar
Severino-Rodrigues, E, Guerra, DSF and Graça-Lopes, R (2002) Carcinofauna acompanhante da pesca dirigida ao camarão sete-barbas (Xiphopenaeus kroyeri) desembarcada na praia do Pereque, Estado de São Paulo, Brasil. Boletim do Instituto de Pesca, São Paulo 28, 3348.Google Scholar
Souza, SR and Hartmann, C (2008) Modificação marginal das ilhas estuarinas usando ferramentas de aerofotogrametria, sedimentologia e batimetria. Revista Brasileira de Cartografia 60, 307318.Google Scholar
Suguio, K (1973) Introdução a Sedimentologia. São Paulo: Edgard Blücher.Google Scholar
Tankersley, RA and Forward, RB Jr (2007) Environmental physiology. In Kennedy, VS and Cronin, LE (eds), The Blue Crab: Callinectes sapidus. College Park, MD: Maryland Sea Grant College, pp. 535564.Google Scholar
Thykjaer, VS, Rodrigues, LS, Haimovici, M and Cardoso, LG (2019) Long-term changes in fishery resources of an estuary in southwestern Atlantic according to local ecological knowledge. Fisheries Management and Ecology. https://doi.org/10.1111/fme.12398.Google Scholar
Tudesco, CC, Fernandes, LP and Di Beneditto, AMP (2012) Population structure of the crab Callinectes ornatus Ordway,1863 (Brachyura: Portunidae) bycatch in shrimp fishery in northern Rio de Janeiro State, Brazil. Biota Neotropica 12, 9398.CrossRefGoogle Scholar
Van Engel, WA (1958) The blue crab and its fishery in Chesapeake Bay: Part I – reproduction, early development, growth and maturation. Commercial Fisheries Review 20, 617.Google Scholar
Vaz, AC, Möller, OO and Almeida, TL (2006) Sobre a descarga dos rios afluentes da Lagoa dos Patos. Atlântica 26, 1323.Google Scholar
Vieira, JP, Castello, JP and Pereira, LE (1998) Ictiofauna. In Seeliger, U, Odebrecht, C and Castello, JP (eds), Os Ecossistemas Costeiro e Marinho do Extremo Sul do Brasil. Rio Grande: Editora Ecoscientia, pp. 134137.Google Scholar
Vigh, DA and Dendinger, JE (1982) Temporal relationships of postmolt deposition of calcium, magnesium, chitin and protein in the cuticle of the Atlantic blue crab, Callinectes sapidus Rathbun. Comparative Biochemistry and Physiology Part A: Physiology 72, 365369.CrossRefGoogle Scholar
Williams, AB (1974) The swimming crabs of the genus Callinectes (Decapodae: Portunidae). Fishery Bulletin 72, 685–198.Google Scholar
Yeager, LA, Krebs, JM, Mcivor, CC and Brame, AB (2007) Juvenile blue crab abundances in natural and man-made tidal channels in mangrove habitat, Tampa Bay, Florida (USA). Bulletin of Marine Science 80, 555565.Google Scholar