Skip to main content Accessibility help

Geographical variation of Balanus improvisus in biochemical and morphometric characters

  • Eeva R. Furman (a1)


Samples of Balanus improvisus were collected from 15 sites in the Baltic, the west coast of Sweden, the British Isles and North America. They were analysed with horizontal starch gel electrophoresis for 11 loci and with opercular plate morphometry for 10 metrical characters. Analyses of isozyme patterns revealed a high degree of genetic similarity amongst populations. The Baltic sites, however, showed less heterozygote deficiency than the British and American sites indicating higher stability and outcrossing in the Baltic. Morphometric characters showed somewhat more heterogeneity than isozymes. The Baltic was relatively more homogeneous by morphometrical characters than by isozymes compared with the other areas. Both analyses separated to some extent the three geographical regions from each other and clustered sites by salinity. Individuals at low salinity had relatively small opercular openings compared to individuals from high salinity.



Hide All
Achituv, Y. & Mizrahi, L., 1987. Allozyme differences between tidal levels in Tetraclita squamosa Pilsbry from the Red Sea. Journal of Experimental Marine Biology and Ecology, 108, 181189.
Appleton, R.D. & Palmer, R., 1988. Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proceedings of the National Academy of Sciences of the United States of America, 85, 43874391.
Atchley, W.R., Gaskins, C.T. & Anderson, D.T., 1976. Statistical properties of ratios. I. Empirical results. Systematic Zoology, 25, 137148.
Avise, J.C., 1975. Systematic value of electrophoretic data. Systematic Zoology, 23, 465481.
Ayala, F.J., Hedgecock, D., Zumwalt, G.S. & Valentine, J.W., 1973. Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages. Evolution, 27, 177191.
Barnes, H. & Barnes, M., 1962. The distribution and general ecology of Balanus balanoides together with some observations on Balanus improvisus in the waters around the coasts of Denmark, southern Sweden and North-East Germany. Lunds Universitets Årsskrift, no. 2, 41 pp.
Barnes, H. & Healy, M.J.R., 1965. Biometrical studies on some common cirripedes. I. Balanus balanoides: measurements of the scuta and terga of animals from a wide geographical range. Journal of the Marine Biological Association of the United Kingdom, 45, 779789.
Barnes, H. & Healy, M.J.R., 1969. Biometrical studies on some common cirripedes. II. Discriminant analysis of measurements on the scuta and terga of B. balanus, B. crenatus, B. improvisus, B. glandula and B. amphitrite stutsburi. Journal of Experimental Marine Biology and Ecology, 4, 5170.
Barnes, H. & Healy, M.J.R., 1971. Biometrical studies on some common cirripedes. III. Discriminant analysis of measurements on the scuta of Balanus eburneus G. Journal of Experimental Marine Biology and Ecology, 6, 8390.
Bell, L.J., Moyer, J.T. & Numachi, K., 1982. Morphological and genetic variation in Japanese populations of the anemonefish Ampiprion clarkii. Marine Biology, 72, 99108.
Bousfield, E.L., 1954. The distribution and spawning seasons of barnacles on the Atlantic coast of Canada. Bulletin. National Museum of Canada, 132, 112153.
Bousfield, E.L. 1955. Ecological control of the occurrence of barnacles in Miramichi Estuary. Bulletin. National Museum of Canada, 137, 167.
Bulnheim, H.-P. & Scholl, A., 1982. Polymorphism of mannose isomerase in North Sea and Baltic Sea populations of the Amphipods Gammarus zaddachi and Gammarus salinus. Marine Biology, 71, 163166.
Burton, R.S., 1983. Protein polymorphisms and genetic differentiation of marine invertebrate populations. Marine Biology Letters, 4, 193206.
Burton, R.S. & Feldman, M.W., 1981. Population genetics of Tigriopus californicus II. Differentiation among neighbouring populations. Evolution, 35, 11921205.
Carlton, J.T. & Zullo, V.A., 1969. Early records of the barnacle Balanus improvisus Darwin from the Pacific coast of North America. Occasional Papers of the California Academy of Sciences, no. 75, 6 pp.
Christiansen, F.B. & Frydenberg, O., 1974. Geographical patterns of four polymorphisms in Zoarces viviparus as evidence of selection. Genetics, 77, 765770.
Crisp, D.J., 1958. The spread of Elminius modestus Darwin in north-west Europe. Journal of the Marine Biological Association of the United Kingdom, 37, 483520.
Crisp, D.J., 1978. Genetic consequences of different reproductive strategies in marine invertebrates. In Genetics of Marine Organisms (ed. B., Battaglia and J.A., Beardmore), pp. 257273. New York: Plenum Press.
Cronin, T.W. & Forward, R.B., 1982. Tidally timed behaviour: effects on larval distributions in estuaries. In Estuarine Comparisons (ed. V.S., Kennedy), pp. 505520. New York: Academic Press.
Dando, P.R., 1987. Biochemical genetics of barnacles and their taxonomy. In Barnacle Biology (ed. A.J., Southward), pp. 7388. Rotterdam: A.A. Balkema.
Dando, P.R. & Southward, A.J., 1980. A new species of Chthamalus (Crustacea: Cirripedia) characterized by enzyme electrophoresis and shell morphology: with a revision of other species of Chthamalus from the western shores of the Atlantic Ocean. Journal of the Marine Biological Association of the United Kingdom, 60, 787831.
Dando, P.R. & Southward, A.J., 1981. Existence of ‘Atlantic’ and ‘Mediterranean’ forms of Chthamalus montagui (Crustacea, Cirripedia) in the western Mediterranean. Marine Biology Letters, 2, 239248.
Darwin, C, 1854. A Monograph on the Sub-class Cirripedia: the Balanidae etc. London: Ray Society.
Felley, J.D. & Avise, J.C., 1980. Genetic and morphological variation of bluegill populations in Florida lakes. Transactions of the American Fisheries Society, 109, 108115.
Flowerdew, M.W., 1983. Electrophoretic investigations of populations of the cirripede Balanus balanoides (L.) around the North Atlantic seaboard. Crustaceana, 45, 260278.
Flowerdew, M. W., 1984. Electrophoretic comparison of the antipodean cirripede, Elminius modestus, with immigrant European populations. Journal of the Marine Biological Association of the United Kingdom, 64, 625635.
Foltz, D.W., 1986. Null alleles as a possible cause of heterozygote deficiencies in the oyster Crassostrea virginica and other bivalves. Evolution, 40, 869870.
Furman, E.R., 1984. Merirokon (Balanus improvisus Darwin) Esiintymisestä, Kasvustaja Lisääntymisestä Tvärminnen Saaristossa. Candidate of Philosophy Thesis, University of Helsinki.
Furman, E.R., 1989. Enzyme genetic variation in Balanus improvisus Darwin (Crustacea: Cirripedia) in the Baltic Sea. Ophelia, 30, 3545.
Furman, E.R. & Yule, A.B., 1991. Balanus improvisus, a species with sparse and isolated populations, is a facultative self-fertiliser. In Proceedings of the Estuarine and Coastal Waters Association Symposium, Caen, 1989, in press.
Furman, E.R., Yule, A.B. & Crisp, D.J., 1990. Gene flow between populations of Balanus improvisus Darwin (Cirripedia) in British estuaries. Scientia Marina, 53(2–3), 145754.
Fyhn, H.J., 1976. Holeuryhalinity and its mechanisms in a cirriped crustacean Balanus improvisus. Comparative Biochemistry and Physiology, 53A, 1930.
Gislen, T., 1950. Till kannedomen om invandringen och utbredningen av Balanus improvisus vid svenska kuster. Fauna och Flora, 1950, 3237.
Gooch, J.L., 1975. Problems in marine genetics. In The Ecology of Fouling Communities. Proceedings of a U.S. A.-U.S.S.R. workshop within the program Biological Productivity and Biochemistry of the World's Oceans (ed. J.D., Costlow), pp. 85103. Washington: U.S. Office of Naval Research.
Hedgecock, D., 1982. Genetic consequences of larval retention: theoretical and methodological aspects. In Estuarine Comparisons (ed. V.S., Kennedy), pp. 553568. New York: Academic Press.
Hedgecock, D., 1986. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bulletin of Marine Science, 39, 550564.
Hedgecock, D., Tracey, M.L. & Nelson, K., 1982. Genetics. In Biology of Crustacea, vol. 2 (ed. L.G., Abele), pp. 283403. New York: Academic Press.
Henry, D.P. & McLaughlin, P.A., 1975. The barnacles of the Balanus amphitrite complex (Cirripedia, Thoracica). Zoologische Verhandelingen, no. 141, 254 pp.
Hill, M.O. & Gauch, H.G., 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42, 4758.
Hoagland, K.E., 1985. Genetic relationships between one British and several north American populations oiCrepidulafornicata based on allozyme studies. Journal ofMolluscan Studies, 51, 177182.
Jones, L.W. & Crisp, D.J., 1953. The larval stages of the barnacle Balanus improvisus Darwin. Proceedings of the Zoological Society of London, 123, 765780.
Juan, E., 1976. Polimorhismo enzimatico en poblaciones de Chthamalus stellatus y C. depressus (Crustacea, Cirripedia). Oecologia Aquatica, 2, 111119.
Koehn, R.K., Milkman, R. & Mitton, J., 1976. Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in blue mussel Mytilus edulis. Evolution, 30, 232.
Koehn, R. & Mitton, J.B., 1972. Population genetics of marine pelecypods. I: Ecological heterogeneity and evolutionary strategy at an enzyme locus. American Naturalist, 106, 4756.
Kolosvary, G., 1942. Uber tertiare Balaniden Ungarns. II. Paläontobgische Zeitschrift, 23,203205.
Kuhl, H. 1963. Uber die Verbreitung der Balaniden durch Schiffe. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, 8, 142150.
Leppäkoski, E. 1984. Introduced species in the Baltic Sea and its coastal ecosystems. Ophelia, supplement 3, 123135.
Lively, C.M., 1986. Predator-induced shell dimorphism in the acorn barnacle Chthamalus anisopoma. Evolution, 40, 232242.
Nei, M., 1972. Genetic distance between populations. American Naturalist, 106, 283292.
Nei, M., 1987. Molecular Evolutionary Genetics. New York: Columbia University Press.
Nei, M. & Koehn, R.K., 1983. Evolution of Genes and Proteins. Sunderland, Massachusetts: Sinauer Associates Inc. Publishers.
Nevo, E., Schimony, T. & Libni, M., 1977. Thermal selection of allozyme polymorphisms in barnacles. Nature, London, 267, 699701.
Nevo, E., Schimony, T. & Libni, M., 1978. Pollution selection of allozyme polymorphisms in barnacles. Experientia, 34, 15621564.
Newman, W.A. & Ross, A., 1976. Revision of the balanomorph barnacles; including a catalog of the species. Memoirs of the San Diego Society of Natural History, no. 9, 108 pp.
Okolotowich, G., 1983. Assessment of pollution in the Bay of Gdansk from macrozoobenthos. In Proceedings of a Symposium on Ecological Investigations of the Baltic Sea Environment, pp. 97110. Riga: Baltic Environment Protection Commission.
Palmer, A.R. 1982. Predation and parallel evolution: recurrent parietal plate reduction in balanomorph barnacles. Paleobiology, 8, 3144.
Salemaa, H., 1978. Geographical variability in the colour polymorphism oildotea baltica (Isopoda) in the northern Baltic. Hereditas, 88, 165182.
Scheltema, R.S., 1971. Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 140, 284322.
Segerstråle, S.G., 1957. Baltic Sea. Memoirs. Geological Society of America, 67, 751800.
Sokal, R.R. & Rohlf, F.J., 1981. Biometry. New York: W.H. Freeman & Company.
Southward, A.J., 1983. A new look at variation in Darwin's species of acorn barnacles. Biological Journal of the Linnean Society London, 20, 5972.
Southward, A.J. & Newman, W. A., 1977. Aspects of the ecology and biogeography of the intertidal and shallow-water balanomorph cirripedia of the Caribbean and adjacent sea-areas. FAO Fisheries Reports, 200, 407425.
Thorpe, R.S., 1976. Biometric analysis of geographic variation and racial affinities. Biological Re-views, 51, 407452.
Tracey, M.L., Bellett, N.F. & Gravem, C.D., 1975. Excess allozyme homozygosity and breeding population structure in the mussel Mytilus californianus. Marine Biology Letters, 5, 111.
Utinomi, H., 1970. Studies on the cirripedian fauna of Japan. IX. Distribution survey of thoracic cirripeds on the southeastern part of the Japan Sea. Publications of the Seto Marine Biological Laboratory, 17, 339372.
Varvio, S.-L., Koehn, R.K. & Väinölä, R., 1988. Evolutionary genetics of the Mytilus edulis complex in the North Atlantic region. Marine Biology, 98, 5160.
Wolf, P. De, 1973. Ecological observations on the mechanisms of dispersal of barnacle larvae during planktonic life and settling. Netherlands Journal of Sea Research, 6, 1129.
Zouros, E. & Foltz, D.W., 1984. Possible explanations of heterozygote deficiency in bivalve molluscs. Malacologia, 25, 583591.

Related content

Powered by UNSILO

Geographical variation of Balanus improvisus in biochemical and morphometric characters

  • Eeva R. Furman (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.