Skip to main content Accessibility help
×
Home

Genetic evidence extends the known distribution of Octopus insularis to the mid-Atlantic islands Ascension and St Helena

  • Michael D. Amor (a1) (a2), Vladimir Laptikhovsky (a3), Mark D. Norman (a2) and Jan M. Strugnell (a1)

Abstract

Recent molecular studies have proved beneficial in providing taxonomic resolution within the Octopus vulgaris species complex, therefore aiding in the appropriate management of this high value global fisheries resource. This study used the mitochondrial ‘barcode of life’ gene Cytochrome Oxidase subunit I (COI) to investigate the identity of shallow-water benthic octopuses in the mid-Atlantic Ocean and their relationship to members of the Octopus vulgaris species complex. Maximum likelihood and Bayesian phylogenetic inference placed individuals collected from two tropical islands, Ascension and St Helena, into a highly supported monophyletic clade with the North Brazilian species O. insularis (BS = 81, PP = 1), extending the known distribution of O. insularis to Ascension and St Helena Islands. Octopus vulgaris and two other member species of the O. vulgaris species complex, O. tetricus and O. cf. tetricus formed a highly supported monophyletic clade (BS = 99, PP = 1). Interspecific distances between the O. mimus group (O. mimus, O. bimaculoides, O. maya and O. insularis) and the O. vulgaris species group (O. vulgaris, O. tetricus and O. cf. tetricus) ranged from 14.7–26.0%, and an estimated date of divergence suggests these groups diverged from a common ancestor between 19.0 and 40.9 million years ago.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genetic evidence extends the known distribution of Octopus insularis to the mid-Atlantic islands Ascension and St Helena
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genetic evidence extends the known distribution of Octopus insularis to the mid-Atlantic islands Ascension and St Helena
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genetic evidence extends the known distribution of Octopus insularis to the mid-Atlantic islands Ascension and St Helena
      Available formats
      ×

Copyright

Corresponding author

Correspondence should be addressed to: M. Amor, Department of Ecology, Environment and Evolution, La Trobe University, Kingsbury Dr, Melbourne, Victoria 3086, Australia email: mdamor@students.latrobe.edu.au

References

Hide All
Acosta-Jofré, M.S., Sahade, R., Laudien, J. and Chiappero, M.B. (2012) A contribution to the understanding of phylogenetic relationships among species of the genus Octopus (Octopodidae: Cephalopoda). Scientia Marina 76, 311318.
Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716723.
Amor, M.D., Norman, M.D., Cameron, H.E. and Strugnell, J.M. (2014) Allopatric speciation within a cryptic species complex of Australasian octopuses. PLoS ONE 9, e98982. doi: 98910.91371/journal.pone.0098982.
de Lima, F.D., Leite, T.S., Haimovici, M. and Oliveira, J.E.L. (2014) Gonadal development and reproductive strategies of the tropical octopus (Octopus insularis) in northeast Brazil. Hydrobiologia 725, 721.
Elias, N.H. (2012) Primeira Descricao das Paralarvas de Octopus insularis (Leite & Haimovici, 2008). A Partir de Reprodutores Mantidos em Laboratorio.
FAO (2012) Fisheries and acquaculture statistics 2010. FAO yearbook. Rome: Food and Agriculture Organization of the United Nations.
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial Cytochrome C Oxidase subunit from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.
Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O. (2010) New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307321.
Hoyle, W.E. (1886) Report on the cephalopods collected by H.M.S. Challenger during the years 1873–76. In Thompson, C.W. and Murray, J. (eds) The voyage of H.M.S. Challanger, zoology, Volume 16. London: Her Majesty's Stationery Office, pp. 1245.
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2007) Clustal W and Clustal X Version 2.0. Bioinformatics 23, 29472948.
Leite, T.S., Haimovici, M., Molina, W. and Warnke, K. (2008) Morphological and genetic description of Octopus insularis, a new cryptic species in the Octopus vulgaris complex (Cephalopoda : Octopodidae) from the tropical South-Western Atlantic. Journal of Molluscan Studies 74, 6374.
Mangold, K. (1983) Octopus vulgaris . In Boyle, P.R. (ed.) Cephalopod life cycles, Volume 1. London: Academic Press, pp. 335364.
Massy, A.L. (1916) British Antarctic (“Terra Nova”) Expedition, 1910. Zoology 2, 141175.
Norman, M.D. and Finn, J.K. (2014) World octopod fisheries. In Jereb, P., Roper, C.F.E., Norman, M.D. and Finn, J.K. (eds) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to Date. Octopods and vampire squids, Volume 3. Rome: Food and Agriculture Organization of the United Nations, pp. 921.
Norman, M.D., Finn, J.K. and Hochberg, F.G. (2014) Family octopodidae. In Jereb, P., Roper, C.F.E., Norman, M.D. and Finn, J.K. (eds) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Octopods and vampire squids. FAO species catalogue for fishery purposes. No. 4. Volume 3. Rome: Food and Agriculture Organization of the United Nations, pp. 36215.
Norman, M.D. and Hochberg, F.G. (2005) The current state of octopus taxonomy. In Proceedings of the International Workshop and Symposium of Cephalopod International Advisory Council, Phuket, 2003. Phuket Marine Biological Center Special Publication, Volume 66, pp. 127154.
Pickford, G.C. (1945) Le Poulpe Americain: a study of the littoral Octopoda of the Western Atlantic. Transactions of the Connecticut Academy of Arts and Sciences 36, 701811.
Pickford, G.C. (1955) A revision of the Octopodinae in the collections of the British Museum. Bulletin of the British Museum (Natural History) . Zoology 3, 151167.
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.
Rambaut, A. and Drummond, A.J. (2003) Tracer 1.3. Oxford University. http://tree.bio.ed.ac.uk/software/tracer
Robson, G.C. (1929) A monograph of the recent cephalopoda, Part I: Octopodinae, Volume 1. London: British Museum (Natural History).
Ronquist, F. and Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.
Roper, C.F.E., Sweeney, M.J. and Nauen, C.E. (1984) FAO species catalogue. Cephalopods of the world: an annotated and illustrated catalogue of species of interest to fisheries . Volume 3 (125). FAO Fisheries Synopsis, pp. 1277.
Sales, J.B.D.L., Rego, P.S.D., Hilsdorf, A.W.S., Moreira, A.A., Haimovici, M., Tomás, A.R., Batista, B.B., Marinho, R.A., Markaida, U., Schneider, H. and Sampaio, I. (2013) Phylogeographical features of Octopus vulgaris and Octopus insularis in the south-eastern Atlantic based on the analysis of mitochondrial markers. Journal of Shellfish Research 32, 325339.
Söller, R., Warnke, K., Saint-Paul, U. and Blohm, D. (2000) Sequence divergence of mitochondrial DNA indicates cryptic biodiversity in Octopus vulgaris and supports the taxonomic distinctiveness of Octopus mimus (Cephalopoda : Octopodidae). Marine Biology 136, 2935.
Stramma, L. (1991) Geostrophic transport of the South Equatorial Current in the Atlantic. Journal of Marine Research 49, 281294.
Stramma, L. and England, M. (1999) On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research 104, 863883.
Stramma, L. and Schott, F. (1999) The mean flow field of the tropical Atlantic Ocean. Deep-Sea Research II 46, 279303.
Strugnell, J.M., Watts, P.C., Smith, P.J. and Allcock, A.L. (2012) Persistent genetic signatures of historic climatic events in an Antarctic octopus. Molecular Ecology 21, 27752787.
Swofford, D.L. (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, MA: Sinauer Associates.
Vidal, É.A.G., Fuentes, L. and da Silva, L.B. (2010) Defining Octopus vulgaris populations: a comparative study of the morphology and chromatophore pattern of paralarvae from northeastern and southwestern Atlantic. Fisheries Research 106, 199208.
Villanueva, R. and Norman, M.D. (2008) Biology of the planktonic stages of benthic octopuses. In Gibson, R.N., Atkinson, R.J.A. and Gordon, J.D.M. (eds) Oceanography and marine biology: an annual review. Boca Raton, FL: CRC Press, pp. 105202.
Voss, G. and Toll, R. (1998) The systematics and nomenclatural status of the Octopodinae described from the Western Atlantic Ocean. In Voss, N., Vecchione, M., Toll, R. and Sweeney, M. (eds) Systematics and biogeography of cephalopods. Volume II. Washington, DC: Smithsonian Contributions to Zoology, pp. 457–454.

Keywords

Type Description Title
WORD
Supplementary materials

Amor supplementary material
Table S1

 Word (20 KB)
20 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed