Skip to main content Accessibility help
×
Home

Diet-induced changes in fatty acid composition of herring larvae reared in enclosed ecosystems

  • R. R. Gatten (a1), J. R. Sargent (a1) and J. C. Gamble (a2)

Abstract

Fertilized herring eggs were hatched in large sea water enclosures containing natural populations of phytoplankton and Zooplankton and the developing fish sampled at intervals for a period of 90 days to determine the levels and composition of their depot triacylglycerols. The percentage of triacylglycerols in total lipid declined from hatching to about 40 days post-hatch and then increased markedly during the remaining 50 days. During the first 30 days from hatching the acyl groups of the triacylglycerols were dominated by polyunsaturated fatty acids, especially 18:4 (n−3), 20:5 (n−3) and 22:6 (n−3), characteristic of a predominantly phytoplanktonic diet. For the remainder of the 90-day experiment the percentages of polyunsaturated fatty acids decreased, to be replaced by increasing percentages of 20:1 (n−9) and 22:1 (n−11 ) fatty acids characteristic of a predominantly zooplanktonic diet.

Copyright

References

Hide All
Ackman, R. G., 1980. Fish lipids. Part 1. In Advances in Fish Science Technology (ed. Connell, J. J.), pp. 86103. Farnham: Fishing News Books Ltd.
Ackman, R. G. & Burgher, R. D., 1964. Cod liver oil: component fatty acids as determined by gas-liquid chromatography. Journal of the Fisheries Research Board of Canada, 21, 319326.
Ackman, R. G. & Eaton, C. A., 1978. Some contemporary applications of open-tubular gas-liquid chromatography in analysis of methyl esters of longer-chain fatty acids. Fette, Seifen, Anstrichmittel, 80, 2137.
Ackman, R. G., Tocher, C. S. & McLauchlan, J., 1968. Marine phytoplankter fatty acids. Journal of the Fisheries Research Board of Canada, 25, 16031620.
Ackman, R. G., Ke, P. J., MacCallum, W. A. & Adams, D. R., 1969. Newfoundland capelin lipids: fatty acid composition and alterations during frozen storage. Journal of the Fisheries Research Board of Canada, 26, 20372059.
Ackman, R. G., Eaton, C. A., Sipos, J. C., Hooper, S. N. & Castell, J. D., 1970. Lipids and fatty acids of two species of North Atlantic krill (Meganyctiphanes norvegica and Thysanoessa inermis) and their role in the aquatic food web. Journal of the Fisheries Research Board of Canada, 27, 513533.
Ackman, R. G., Eaton, C. A. & Dyerberg, J., 1980. Marine docosenoic acid isomer distribution in the plasma of Greenland Eskimos. American Journal of Clinical Nutrition, 33, 18141817.
Blaxter, J. H. S., 1965. The feeding of herring larvae and their ecology in relation to feeding. California Co-operative Oceanic Fisheries Investigations, 10, 7988.
Bosund, I. & Ganrot, B., 1969. Lipid hydrolysis in frozen Baltic herring. Journal of Food Science, 34, 1318.
Christie, W. W., 1973. Lipid Analysis. 338 pp. Pergamon Press.
Cowey, C. B. & Sargent, J. R., 1977. Lipid nutrition in fish. Comparative Biochemistry and Physiology 57 B, 269273.
Doyle, M. J., 1977. A morphological staging system for the larval development of the herring, Clupea harengus L. Journal of the Marine Biological Association of the United Kingdom, 57, 859867.
Farquar, J. W., 1962. Identification and gas-liquid Chromatographie behaviour of plasmalogen aldehydes and their acetal, alcohol and acetylated alcohol derivatives. Journal of Lipid Research, 3, 2130.
Fewster, M. E., Burns, B. J. & Mead, J. F., 1969. Quantitative densitometric thin-layer chromatography of lipids using copper acetate reagent. Journal of Chromatography, 43, 120126.
Folch, J., Lees, M. & Sloane-Stanley, G. H., 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497509.
Gamble, J. C., MacLachlan, P., Nicholl, N. T. & Baxter, I. G., 1981. Growth and feeding of Atlantic herring larvae reared in large plastic enclosures. Rapport et procès-verbaux des réunions. Conseil international pour l'exploration de la mer, 178, 121134.
Henderson, R. J., Sargent, J. R. & Pirie, B. J., 1982. Peroxisomal oxidation of fatty acids in livers of rainbow trout (Salmo gairdnerii) fed diets of marine Zooplankton. Comparative Biochemistry and Physiology. (In the press.)
Lee, R. F., Nevenzel, J. C. & Paffenhöfer, G. A., 1971. Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods Marine Biology, 9, 99108.
MacLachlan, P., Seaton, D. D. & Gamble, J. C., 1981. Developmental patterns of experimentally enclosed populations of autumn and spring spawned Atlantic herring larvae. International Council for the Exploration of the Sea (CM. Papers and Reports), L:21, 21 pp. [Mimeo.]
Pascal, J.-C. & Ackman, R. G., 1976. Long chain monoethylenic alcohol and acid isomers in lipids of copepods and capelin. Chemistry and Physics of Lipids, 16, 219223.
Sargent, J. R., McIntosh, R., Bauermeister, A. & Blaxter, J. H. S., 1979. Assimilation of the wax esters of marine Zooplankton by herring (Clupea harengus) and rainbow trout (Salmo gairdnerii). Marine Biology, 51, 203207.
Weaver, J. E., 1974. Temporal trends in fatty acid composition of juvenile Atlantic menhaden fed brine shrimp nauplii. Transactions of the American Fisheries Society, 103, 382386.

Diet-induced changes in fatty acid composition of herring larvae reared in enclosed ecosystems

  • R. R. Gatten (a1), J. R. Sargent (a1) and J. C. Gamble (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed