Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-22T23:34:44.207Z Has data issue: false hasContentIssue false

Development of the genital system in the copepodid stages of the calanoid copepod Temora stylifera Dana

Published online by Cambridge University Press:  11 May 2009

Suzanne Razouls
Affiliation:
Laboratoire Arago, 66650 Banyuls-sur-Mer, France
P. Nival
Affiliation:
Station Zoologique, 06230 Villefranche-sur-Mer, France
Suzanne Nival
Affiliation:
Station Zoologique, 06230 Villefranche-sur-Mer, France

Extract

Within a cohort of young copepods, the individual size or growth rate becomes increasingly diversified during the development. The longer the development, the greater the resulting anatomical or functional diversity, since the differences between fast growing and slow growing individuals increase with time. Different factors may contribute to this variability, such as genetic diversity and metabolic differences in the ability to utilize food resources.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou-Debs, C., 1979. Aspects de la Physiologie et de la Biologie de Temora stylifera Dana (Copépode Calanoïde): éléments du Bilan en Carbone et Azote et Optimisation de la Fertilité. Thése de 3ème cycle d'Océanographie biologique, Université Paris VI.Google Scholar
Corkett, C. & McLaren, I. A., 1978. The biology of Pseudocalanus. Advances in Marine Biology, 15, 1231.Google Scholar
Dagg, M., 1977. Some effects of patchy food environments on copepods. Limnology and Oceanography, 22, 99107.CrossRefGoogle Scholar
Ginsburger-Vogel, T. & Charniaux-Cotton, H., 1982. Sex determination. In The Biology of Crustacea, vol. 2. Embryology, Morphology and Genetics (ed. Abele, L.), pp. 257281. New York: Academic Press.Google Scholar
Grigg, H. & Bardwell, S. J., 1982. Seasonal observations on moulting and maturation in stage V copepodites of Calanus finmarchicus from the Firth of Clyde. Journal of the Marine Biological Association of the United Kingdom, 62, 315327.CrossRefGoogle Scholar
Katona, S. K., 1970. Growth characteristics of the copepods Eurytemora affinis and E. herdmani in laboratory cultures. Helgoländer wissenschaftliche Meeresuntersuchungen, 20, 373384.CrossRefGoogle Scholar
Landry, M. R., 1975 a. Seasonal temperature effects and predicting development rates of marine copepod eggs. Limnology and Oceanography, 20, 434—440.CrossRefGoogle Scholar
Landry, M. R., 1975 b. The relationship between temperature and the development of life stages of the marine copepod Acartia clausi Giesbrecht. Limnology and Oceanography, 20, 854857.CrossRefGoogle Scholar
Landry, M. R., 1983. The development of marine calanoid copepods with comment on the isochronal rule. Limnology and Oceanography, 28, 614624.CrossRefGoogle Scholar
Martoja, M. & Martoja, M., 1967. Initiation aux Techniques de I'Histologie Animale. Paris: Masson.Google Scholar
Miller, C. B., Huntley, M. E. & Brooks, E., 1984. Post collection moulting rates of planktonic marine copepods: measurements, applications, problems. Limnology and Oceanography, 29, 12741289.CrossRefGoogle Scholar
Nival, P. & Nival, S., 1983. La variabilité individuelle au cours du développement du copépode Temora stylifera Dana. Rapports et procès-verbaux des reunions. Commission internationale pour l'exploration scientifique de la Mer Méditerranée, 28, 163164.Google Scholar
Razouls, C., 1974. Variations annuelles quantitatives de deux espèces dominantes de copépodes planctoniques, Centropages typicus et Temora stylifera de la région de Banyuls: cycle biologique et estimation de la production. III. Dynamique des populations et calcul de leur production. Cahiers de biologie marine, 15, 5188.Google Scholar
Razouls, S., 1973. Evolution des gonades chez les stades juvéniles d'un copépode pélagique, Temora stylifera (Calanoida, Temoridae). Compte Rendu hebdomadaire des séances de l'Académie des sciences (sér. D), 277, 15371539.Google Scholar
Razouls, S., 1974. Maturité sexuelle et fécondité chez les femelles de Temora stylifera, copépode pélagique (Copepoda Calanoida). Archives de zoologie expérimental et générate, 115, 387399.Google Scholar
Razouls, S., Nival, S. & Nival, P., 1986. La reproduction de Temora stylifera: ses implications anatomiques en relation avec le facteur ‘nutrition’. Journal of Plankton Research, 8, 875889.CrossRefGoogle Scholar
Sciandra, A., 1982. Etude d'un Écosystème Marin Artificiel: Construction d'un Modèle et Application a l'Exploitation d'un Copépode pélagique, Euterpina acutifrons Dana. Thèse de 3éme cycle d'Océanographie biologique, Universite Paris VI.Google Scholar
Vidal, J., 1980. Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature and body-size on the growth-rate of Calanus pacificus and Pseudocalanus sp. Marine Biology, 56, 111134.CrossRefGoogle Scholar
Woodhead, P. M. J. & Riley, J. D., 1959. Separation of the sexes of Calanus finmarchicus (Gunn.) in the fifth copepodite stage, with comments on the sex ratio and the duration in this stage. Journal du Conseil, 3, 351.Google Scholar
Yassen, S. T., 1981. Méthode d'élevage de copépodes planctoniques au laboratoire (Temora stylifera, Acartia clausi). Estimation du taux de mortalité. Annales de l'Institut océanographique, 57, 125132.Google Scholar