Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T14:54:09.468Z Has data issue: false hasContentIssue false

A Comparative Study of the Chromosomes of Mytilus Edulis and Mytilus Galloprovincialis

Published online by Cambridge University Press:  11 May 2009

D. R. Dixon
Affiliation:
N.E.R.C. Institute for Marine Environmental Research, Prospect Place, The Hoe, Plymouth PL1 3DH
N. Flavell
Affiliation:
Department of Zoology, University of Manchester, Manchester M13 9PL

Extract

The exact form of the taxonomic relationship between the common or blue mussel, Mytilus edulis L., and Mytilus galloprovincialis Lmk, the Mediterranean mussel, has been the subject of considerable scientific interest in recent years (for a review see Gosling, 1984). While the origins of this separation into two species rests with the original descriptions by Linnaeus and Lamarck (e.g. Soot-Ryen, 1955), interest was stimulated in recent times through the discovery by Hepper (1957) of an ‘unusual’ type of mussel at Padstow in Cornwall which, on the basis of morphological criteria, he identified as M. galloprovincialis (see also Lewis & Seed, 1969). This discovery was followed by a series of electrophoretic investigations providing evidence that the so-called ‘Padstow mussel’ exhibits genetic affinities with M. galloprovincialis from the Mediterranean (Ahmad & Beardmore, 1976; Skibinski, Ahmad & Beardmore, 1978; Skibinski, Cross & Ahmad, 1980). In her recent review paper on the systematic status of M. galloprovincialis in western Europe, Gosling (1984) considers information from morphological, cytological, immunological, electrophoretic and hybridization studies and concludes that M. galloprovincialis is a ‘form’ or ecotype of M. edulis.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, M. & Beardmore, J. A., 1976. Genetic evidence that the ‘Padstow mussel’ is Mytilus galloprovincialis. Marine Biology, 35 139147.CrossRefGoogle Scholar
Ahmed, M. & Sparks, A. K., 1970. Chromosome number, structure and autosomal polymorphism in the marine mussel Mytilus edulis and Mytilus californianus. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 138 113.CrossRefGoogle Scholar
Bajer, A., 1959. Change of length and volume of mitotic chromosomes in living cells. Hereditas, 45 579596.CrossRefGoogle Scholar
Brock, V., 1980. Evidence of niche differences in sympatric populations of Cerastoderma edule and sC. lamarcki. Marine Ecology – Progress Series, 2, 75—80.CrossRefGoogle Scholar
Brock, V., 1985. Immuno-electrophoretic studies of genetic relations between populations of Mytilus edulis and M. galloprovincialis from the Mediterranean, the Baltic, the East and West Atlantic, and the East Pacific. In Proceedings of the 19th European Marine Biology Symposium, Plymouth, 1984 (ed. Gibbs, P. E.), pp. 515520. Cambridge University Press.Google Scholar
Dixon, D. R., 1982. Aneuploidy in mussel embryos (Mytilus edulis L.) originating from a polluted dock. Marine Biology Letters, 3 155161.Google Scholar
Dixon, D. R. & Clarke, K. R., 1982. Sister chromatid exchange: a sensitive method for detecting damage caused by exposure to environmental mutagens in the chromosomes of adult Mytilus edulis. Marine Biology Letters, 3 163172.Google Scholar
Gosling, E., 1984. The systematic status of Mytilus galloprovincialis in western Europe: a review. Malacologia, 25 551568.Google Scholar
Hepper, B. T., 1957. Notes on Mytilus galloprovincialis Lamarck in Great Britain. Journal of the Marine Biological Association of the United Kingdom, 36 3340.CrossRefGoogle Scholar
Ieyama, H. & Inaba, A., 1974. Chromosome numbers of ten species in four families of Pteriomorphia (Bivalvia). Venus, 33 129137.Google Scholar
Kligerman, A. D. & Bloom, S. E., 1977. Rapid chromosome preparations from solid tissues of fishes. Journal of the Fisheries Research Board of Canada, 34 266269.CrossRefGoogle Scholar
Ledley, R. S., Lubs, H. A. & Ruddle, R. H., 1972. Introduction to chromosome analysis. Computers in Biology and Medicine, 2 107128.CrossRefGoogle ScholarPubMed
Levan, A., Fredga, K. & Sandberg, A. A., 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52 201220.CrossRefGoogle Scholar
Lewis, J. R. & Powell, N. T., 1961. The occurrence of curved and ungulate forms of the mussel Mytilus edulis L. in the British Isles and their relationship to M. galloprovincialis Lamarck. Proceedings of the Zoological Society of London, 137 583598.CrossRefGoogle Scholar
Lewis, J. R. & Seed, R., 1969. Morphological variations in Mytilus from south-west England in relation to the occurrence of M. galloprovincialis Lamarck. Cahiers de biologie marine, 10 231253.Google Scholar
Lubet, P., 1959. Recherches sur le cycle sexuel et l'émission des gametes chez les Mytilida et les Pectinidae. Revue des travaux de l'Office (scientifique et technique) des pêches maritimes, 23 384548.Google Scholar
Lubet, P., 1973. Exposé synoptique des données biologique sur la moule Mytilus galloprovincialis (Lamarck 1819). F.A.O. Fisheries Synopsis, no. 88, 44 pp.Google Scholar
Lubet, P., Prunus, G., Masson, M. & Bucaille, D., 1984. Recherches expérimentales sur l'hybridation de Mytilus edulis L. et M. galloprovincialis Lmk. (Mollusques Lamellibranches). Bulletin de la Société zoologique de France, 109 8798.Google Scholar
Menzel, R. W., 1968. Chromosome number in nine families of marine pelecypod molluscs. Nautilus, 82 4550.Google Scholar
Moynihan, E. P. & Mahon, G. A. T., 1983. Quantitative karyotype analysis in the mussel Mytilus edulis L. Aquaculture, 33 301309.CrossRefGoogle Scholar
Sasaki, M., 1961. Observations on the modification in size and shape of chromosomes due to technical procedure. Chromosoma, 11 514522.CrossRefGoogle ScholarPubMed
Seed, R., 1976. Ecology. In Marine Mussels: Their Ecology and Physiology (ed. Bayne, B. L.), pp. 1365. Cambridge University Press.Google Scholar
Skibinski, D. O. F., Ahmad, M. & Beardmore, J. A., 1978. Genetic evidence of naturally occurring hybrids between Mytilus edulis and Mytilus galloprovincialis. Evolution, 32 354364.CrossRefGoogle ScholarPubMed
Skibinski, D. O. F. & Beardmore, J. A., 1979. A genetic study of intergradation between Mytilus edulis and Mytilus galloprovincialis. Experientia, 35 14421444.CrossRefGoogle ScholarPubMed
Skibinski, D. O. F., Cross, T. F. & Ahmad, M., 1980. Electrophoretic investigation of systematic relationships in the marine mussels Modiolus modiolus L., Mytilus edulis L., and Mytilus galloprovincialis Lmk. (Mytilidae; Mollusca). Biological Journal of the Linnean Society ofLondon, 13 6573.CrossRefGoogle Scholar
Soot-Ryen, T., 1955. A report on the family Mytilidae (Pelecypoda). Report. Allan Hancock Pacific Expedition, 20 (1), 174 pp.Google Scholar
Thiriot-Quiévreux, C. & Ayraud, N., 1982. Les carotypes de quelques espèces de bivalves et de gastéropodes marins. Marine Biology 70 165172.CrossRefGoogle Scholar
White, M. J. D., 1973. Animal Cytology and Evolution. Cambridge University Press.Google Scholar