Skip to main content Accessibility help
×
Home

Colonization dynamics of periphytic ciliates at different water depths in coastal waters of the Yellow Sea, northern China

  • Mohammad Nurul Azim Sikder (a1), Mamun Abdullah Al (a1), Guobin Hu (a1) (a2) and Henglong Xu (a1)

Abstract

The colonization features of ciliate communities have proved to be a useful tool for indicating water quality status in aquatic ecosystems. To determine an optimal water depth for bioassessment using these ecological bioindicators, the colonization process of periphytic ciliates was studied at four depths of 1, 2, 3.5 and 5 m in Chinese coastal waters. Samples were collected at time intervals of 3, 7, 10, 14, 21 and 28 days using glass slides. The periphytic ciliate communities represented similar colonization dynamics from a depth of 1 to 3.5 m: (1) the temporal variability was well fitted to the MacArthur-Wilson and logistic models; (2) the species composition reached an equilibrium during the exposure time periods of 10–14 days; and (3) the maximum abundances were definitely higher at a depth of 1 m than those at 3.5 m. PERMANOVA test revealed that the colonization pattern at 1 m depth was significantly different from those at the other three depths. Results suggest that the colonization dynamics of periphytic ciliates may be influenced by water depth in coastal waters. These findings provide an important reference for establishing an optimal sampling strategy for bioassessment on large spatial/temporal scales in marine ecosystems.

Copyright

Corresponding author

Author for correspondence: Henglong Xu, E-mail: xuhl@ouc.edu.cn

Footnotes

Hide All
*

Co-first author: M.N.A. Sikder & M. Abdullah Al.

Footnotes

References

Hide All
Abdullah Al, M, Gao, Y, Xu, G, Wang, Z and Xu, H (2017) Variations in the community structure of biofilm-dwelling protozoa at different depths in coastal waters of the Yellow Sea, northern China. Journal of the Marine Biological Association of the United Kingdom. doi: 10.1017/S0025315417001680.
Abdullah Al, M, Gao, Y, Xu, G, Wang, Z, Warren, A and Xu, H (2018) Trophic-functional patterns of biofilm-dwelling ciliates at different water depths in coastal waters of the Yellow Sea, northern China. European Journal of Protistology 63, 3443.
Anderson, MJ, Gorley, RN and Clark, KR (2008) PREMANOVA + for PRIMER Guide to Software and Statistical Methods. Plymouth: PRIMER-E.
Bamforth, SS (1982) The variety of artificial substrates used for microfauna. In Cairns, J Jr (ed.), Artificial Substrates. Ann Arbor, MI: Ann Arbor Science Publishers, pp. 115130.
Berger, H (1999) Monograph of the Oxytrichidae (Ciliophora, Hypotrichia). Dordrecht: Kluwer Academic Publishers.
Burkovskii, IV and Mazei, YA (2001) A study of ciliate colonization of unpopulated substrates of an estuary in the White Sea. Oceanology 41, 845852.
Burkovskii, IV, Mazei, YA and Esaulov, AS (2011) Influence of the period of existence of a biotope on the formation of the species structure of a marine psammophilous ciliate community. Russian Journal of Marine Biology 37, 177184.
Cairns, J Jr and Henebry, MS (1982) Interactive and noninteractive protozoa colonization process. In Cairns, J Jr (ed.), Artificial Substrates. Ann Arbor, MI: Ann Arbor Science Publishers, pp. 2730.
Clarke, RK and Gorley, RN (2015) PRIMER 7; User Manual/Tutorial. Plymouth: PRIMER-E.
Coppellotti, O and Matarazzo, P (2000) Ciliate colonization of artificial substrates in the Lagoon of Venice. Journal of the Marine Biological Association of the United Kingdom 80, 419427.
Eisenmann, H, Letsiou, I, Feuchtinger, A, Bersker, W, Mannweiler, E, Hutzler, P and Arnz, P (2001) Interception of small particles by flocculent structures, sessile ciliates and the basic layer of a wastewater biofilm. Applied and Environmental Microbiology 67, 42864292.
Franco, C, Esteban, G and Tellez, C (1998) Colonization and succession of ciliated protozoa associated with submerged leaves in a river. Limnologica 28, 275283.
Kathol, M, Norf, H, Arndt, H and Weitere, M (2009) Effects of temperature increase on the grazing of planktonic bacteria by biofilm-dwelling consumers. Aquatic Microbial Ecology 55, 6579.
Li, J, Xu, H, Lin, X and Song, W (2009) Colonization of periphytic ciliated protozoa on an artificial substrate in marinculture waters with notes on responses to environmental factors. Progress in Natural Science 19, 12351240.
MacArthur, R and Wilson, EO (1967) The Theory of Island Biogeography. Princeton, NJ: Princeton University Press, p. 203.
Mieczan, T (2010) Periphytic ciliates in three shallow lakes in eastern Poland: a comparative study between a phytoplankton-dominated lake, a phytoplankton-macrophyte lake and a macrophyte-dominated lake. Zoological Studies 49, 589600.
Norf, H, Arndt, H and Weitere, M (2007) Impact of local temperature increase on the early development of biofilm-associated ciliate communities. Oecologia 151, 341350.
Norf, H, Arndt, H and Weitere, M (2009 a) Effects of resource supplements on mature ciliate biofilms: an empirical test using a new type of flow cell. Biofouling 25, 769778.
Norf, H, Arndt, H and Weitere, M (2009 b) Responses of biofilm-dwelling ciliate communities to planktonic and benthic resource enrichment. Microbial Ecology 57, 687700.
Parry, JD (2004) Protozoan grazing of freshwater biofilms. Advances in Applied Microbiology 57, 167196.
Peters, RH (1983) The Ecological Implication of Body-Size. Cambridge: Cambridge University Press.
Railkin, AI (1995) Heterotrophic flagellates on artificial substrates in the White Sea. Cytology 37, 951957.
Scherwass, A, Fischer, Y and Arndt, H (2005) Detritus as a potential food source for protozoans: utilization of fine particulate plant detritus by heterotrophic flagellate, Chilomonas paramecium and a ciliate, Tetrahymena pyriformis. Aquatic Ecology 39, 439455.
Song, W, Warren, A and Hu, X (2009) Free-living Ciliates in the Bohai and Yellow Seas. Beijing: Science Press.
Struder-Kypke, MC (1999) Periphyton and sephagnicolous protists of dystrophic bog lakes (Brandenburg, Germany) I. Annual cycles, distribution and comparison to other lakes. Limnologica 29, 393406.
Wang, Q and Xu, H (2015) Colonization dynamics in trophic-functional patterns of biofilm-dwelling ciliates using two methods in coastal waters. Journal of the Marine Biological Association of the United Kingdom 95, 681689.
Wang, Z, Xu, G, Zhao, L, Gao, Y, Abdullah Al, M and Xu, H (2017) A new method for evaluating defense of microalgae against protozoan grazing. Ecological Indicators 77, 261266.
Weitere, M, Schmidt-Denter, K and Arndt, H (2003) Laboratory experiments on the impact of biofilms on the plankton of a large river. Freshwater Biology 48, 19831992.
Xu, H, Min, GS, Choi, JK, Jung, JH and Park, MH (2009 a) Approach to analyses of periphytic ciliate colonization for monitoring water quality using a modified artificial substrate in Korean coastal waters. Marine Pollution Bulletin 58, 12781285.
Xu, H, Min, GS, Choi, JK, Kim, SJ, Jung, JH and Lim, BJ (2009 b) An approach to analyses of periphytic ciliate communities for monitoring water quality using a modified artificial substrate in Korean coastal waters. Journal of the Marine Biological Association of the United Kingdom 89, 669679.
Xu, H, Zhang, W, Jiang, Y, Zhu, M, Al-Rasheid, KAS, Warren, A and Song, W (2011) An approach to determining sampling effort for analyzing biofilm-dwelling ciliate colonization using an artificial substratum in coastal waters. Biofouling 27, 357366.
Xu, H, Zhang, W and Jiang, Y (2014) Do early colonization patterns of periphytic ciliate fauna reveal environmental quality status in coastal waters? Environmental Science and Pollution Research 21, 70977112.
Zhang, W, Xu, H, Jiang, Y, Zhu, M and Al-Resheid, KA (2012) Colonization dynamics in trophic-functional structure of periphytic protist communities in coastal waters. Marine Biology 159, 735748.
Zhang, W, Xu, H, Jiang, Y, Zhu, M and Al-Rashied, KAS (2013) Colonization dynamics of periphytic ciliate communities on an artificial substratum in coastal waters of the Yellow Sea, northern China. Journal of the Marine Biological Association of the United Kingdom 93, 5768.

Keywords

Type Description Title
WORD
Supplementary materials

Sikder et al. supplementary material
Table S1

 Word (32 KB)
32 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed