Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T17:44:08.782Z Has data issue: false hasContentIssue false

Biochemical-Genetic and Acrorhagial Characteristics of Pedal Disc Colour Phenotypes of Actinia Equina

Published online by Cambridge University Press:  11 May 2009

A. M. Donoghue
Affiliation:
Department of Zoology, University of Nottingham, University Park, Nottingham NG7 2RD
D. L. J. Quicke
Affiliation:
Department of Zoology, University of Nottingham, University Park, Nottingham NG7 2RD
R. C. Brace
Affiliation:
Department of Zoology, University of Nottingham, University Park, Nottingham NG7 2RD

Extract

Previous work has shown that three ecologically disinct morphs can be identified amongst beadlet anemones, Actinia equina L., ranging in column coloration from red to brown (Quicke, Donoghue & Brace, 1983; Quicke & Brace, 1984; Quicke et al. 1985). Each is adapted to a different inter-tidal range, and is characterized by a multi-locus gene complex, which includes loci encoding a number of metabolically important enzymes, pedal disc coloration and probably strength of pedal attachment. They have been named the upper (U), mid (M) and lower (L) shore morphs, and are relatively most abundant on the upper mid, lower mid and low shores respectively. Members of the U morph are typically homozygous slow and fast at a hexokinase locus and a malate dehydrogenase locus respectively, whereas those of the L morph are typically homozygous for the other allele at each of these loci; M morph individuals are heterozygous at both.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Äbel, E. F., 1954. Ein Beitrag zur Giftwirkung der Aktinien und Funktion der Randsäckchen. Zoologischer Anzeiger, 153, 259268.Google Scholar
Bigger, C. H., 1976. The acrorhagial resonse of Anthopleura krebsi: intraspecific and interspecific recognition. In Coelenterate Ecology and Behaviour (ed. Mackie, G. O.), pp. 127136. New York: Plenum Press.CrossRefGoogle Scholar
Bigger, C. H., 1980. Interspecific and intraspecific acrorhagial aggressive behaviour among sea anemones: a recognition of self and not-self. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 159, 117134.CrossRefGoogle Scholar
Bonnin, J. P., 1964. Recherches sur la ‘réaction d'agression’ et sur le fonctionnement des acrorrhages d' Actinia equina L. Bulletin biologique de la France et de la Belgique, 98, 225250.Google Scholar
Brace, R. C., 1981. Intraspecific aggression in the colour morphs of the anemone Phymactis clematis from Chile. Marine Biology, 64, 8593.CrossRefGoogle Scholar
Brace, R. C. & Pavey, J., 1978. Size-dependent dominance hierarchy in the anemone Actinia equina. Nature, London, 273, 752753.CrossRefGoogle Scholar
Brace, R. C., Pavey, J. & Quicke, D. L. J., 1979. Intraspecific aggression in the colour morphs of the anemone Actinia equina: the ‘convention’ governing dominance ranking. Animal Behaviour, 27, 553561.CrossRefGoogle Scholar
Brace, R. C. & Quicke, D. L. J., 1985. Further analysis of individual spacing within aggregations of the anemone, Actinia equina. Journal of the Marine Biological Association of the United Kingdom, 65, 3553.CrossRefGoogle Scholar
Carter, M. A. & Thorp, C. H., 1979. The reproduction of Actinia equina L. var. mesembryanthemum. Journal of the Marine Biological Association of the United Kingdom, 59, 9891001.CrossRefGoogle Scholar
Cott, H. B., 1940. Adaptive Coloration in Animals, xxxii, 508 pp. London: Methuen & Co. Ltd.Google Scholar
Francis, L., 1973. Intraspecific aggression and its effect on the distribution of Anthopleura elegantissima and some related sea anemones. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 144, 7392.CrossRefGoogle ScholarPubMed
Francis, L., 1976. Social organization within clones of the sea anemone Anthopleura elegantissima. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 150, 361376.CrossRefGoogle ScholarPubMed
Orr, J., Thorpe, J. P. & Carter, M. A., 1982. Biochemical genetic confirmation of the asexual reproduction of brooded offspring in the sea anemone Actinia equina. Marine Ecology — Progress Series, 7, 227229.CrossRefGoogle Scholar
Ottaway, J. R., 1977. Pleurobranchaea novaezelandiae preying on Actinia tenebrosa. New Zealand Journal of Marine and Freshwater Research, 11, 125—130.CrossRefGoogle Scholar
Ottaway, J. R., 1978. Population ecology of the intertidal anemone Actinia tenebrosa. I. Pedal locomotion and intraspecific aggression. Australian Journal of Marine and Freshwater Research, 29, 787802.CrossRefGoogle Scholar
Purcell, J. E., 1977. Aggressive function and induced development of catch tentacles in the sea anemone Metridium senile (Coelenterata, Actiniaria). Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 153, 355368.CrossRefGoogle Scholar
Quicke, D. L. J. & Brace, R. C., 1983. Phenotypic and genotypic spacing within an aggregation of the anemone, Actinia equina. Journal of the Marine Biology Association of the United Kingdom, 63, 493515.CrossRefGoogle Scholar
Quicke, D. L. J. & Brace, R. C., 1984. Evidence for the existence of a third, ecologically distinct morph of the anemone, Actinia equina. Journal of the Marine Biological Association of the United Kingdom, 64, 53534.CrossRefGoogle Scholar
Quicke, D. L. J., Donoghue, A. M. & Brace, R. C., 1983. Biochemical-genetic and ecological evidence that red/brown individuals of the anemone Actinia equina comprise two morphs in Britain. Marine Biology, 77, 2937.CrossRefGoogle Scholar
Quicke, D. L. J., Donoghue, A. M., Keeling, T. F. & Brace, R. C., 1985. Littoral distributions and evidence for differential post-settlement selection of the morphs of Actinia equina. Journal of the Marine Biological Association of the United Kingdom, 65, 120.CrossRefGoogle Scholar
Stephenson, T. A., 1928. The British Sea Anemones, vol. 1. xii, 148 pp. London: Ray Society.Google Scholar
Stephenson, T. A., 1935. The British Sea Anemones, vol. 2. ix, 426 pp. London: Ray Society.Google Scholar
Wells, H., & King, J. L., 1980. A general ‘exact test’ for N × M contingency tables. Bulletin of the Southern California Academy of Sciences, 79, 6577Google Scholar
Williams, R. B., 1975. Catch-tentacles in sea anemones: occurrence in Haliplanella luciae (Verrill) and a review of current knowledge. Journal of Natural History, 9, 241248.CrossRefGoogle Scholar
Williams, R. B., 1978. Some recent observations on the acrorhagi of sea anemones. Journal of the Marine Biological Association of the United Kingdom, 58, 787788.Google Scholar