Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-t47zf Total loading time: 0.267 Render date: 2021-03-08T23:09:41.227Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Geographic patterns of biodiversity in European coastal marine benthos

Published online by Cambridge University Press:  14 September 2016

Herman Hummel
Affiliation:
Monitor Taskforce, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, the Netherlands
Pim Van Avesaath
Affiliation:
Monitor Taskforce, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, the Netherlands
Sander Wijnhoven
Affiliation:
Monitor Taskforce, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, the Netherlands Ecoauthor, Heinkenszand, the Netherlands
Loran Kleine-Schaars
Affiliation:
Monitor Taskforce, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, the Netherlands
Steven Degraer
Affiliation:
Royal Belgian Institute of Natural Sciences, OD Nature, Marine Ecology and Management, Brussels and Oostende, Belgium
Francis Kerckhof
Affiliation:
Royal Belgian Institute of Natural Sciences, OD Nature, Marine Ecology and Management, Brussels and Oostende, Belgium
Natalia Bojanic
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
Sanda Skejic
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
Olja Vidjak
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
Maria Rousou
Affiliation:
Marine & Environmental Research Lab Ltd, Limassol, Cyprus
Helen Orav-Kotta
Affiliation:
Estonian Marine Institute, University of Tartu, Tallinn, Estonia
Jonne Kotta
Affiliation:
Estonian Marine Institute, University of Tartu, Tallinn, Estonia
Jérôme Jourde
Affiliation:
Observatoire de la biodiversité (OBIONE), LIttoral ENvironnement et Sociétés, CNRS/University of La Rochelle, France
Maria Luiza Pedrotti
Affiliation:
Sorbonne Universités, UPMC University, Paris 6 and UMR 7093, LOV, Villefranche-sur-mer, France
Jean-Charles Leclerc
Affiliation:
Sorbonne Universités, UPMC University, Paris 6, and CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
Nathalie Simon
Affiliation:
Sorbonne Universités, UPMC University, Paris 6, and CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
Fabienne Rigaut-Jalabert
Affiliation:
Sorbonne Universités, UPMC University, Paris 6, and CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
Guy Bachelet
Affiliation:
Arcachon Marine Station, CNRS, Université de Bordeaux, EPOC, Arcachon, France
Nicolas Lavesque
Affiliation:
Arcachon Marine Station, CNRS, Université de Bordeaux, EPOC, Arcachon, France
Christos Arvanitidis
Affiliation:
Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
Christina Pavloudi
Affiliation:
Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
Sarah Faulwetter
Affiliation:
Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
Tasman Crowe
Affiliation:
School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
Jennifer Coughlan
Affiliation:
School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
Lisandro Benedetti-Cecchi
Affiliation:
Department of Biology, University of Pisa, Pisa, Italy
Martina Dal Bello
Affiliation:
Department of Biology, University of Pisa, Pisa, Italy
Paolo Magni
Affiliation:
CNR, Institute for Coastal Marine Environment, Torregrande, Oristano, Italy
Serena Como
Affiliation:
CNR, Institute for Coastal Marine Environment, Torregrande, Oristano, Italy
Stefania Coppa
Affiliation:
CNR, Institute for Coastal Marine Environment, Torregrande, Oristano, Italy
Anda Ikauniece
Affiliation:
Latvian Institute of Aquatic Ecology, Riga, Latvia
Tomas Ruginis
Affiliation:
Marine Science and Technology Centre, Klaipeda University, Lithuania, Klaipeda, Lithuania
Emilia Jankowska
Affiliation:
Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Jan Marcin Weslawski
Affiliation:
Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Jan Warzocha
Affiliation:
National Marine Fisheries Research Institute, Gdynia, Poland
Sławomira Gromisz
Affiliation:
National Marine Fisheries Research Institute, Gdynia, Poland
Bartosz Witalis
Affiliation:
National Marine Fisheries Research Institute, Gdynia, Poland
Teresa Silva
Affiliation:
Marine and Environmental Sciences Centre (MARE), Laboratório de Ciências do Mar, Universidade de Évora, Sines, Portugal
Pedro Ribeiro
Affiliation:
Department of Oceanography and Fisheries, Marine and Environmental Sciences Centre (MARE) and Institute of Marine Research (IMAR), University of the Azores, Horta, Portugal
Valentina Kirienko Fernandes De Matos
Affiliation:
Department of Oceanography and Fisheries, Marine and Environmental Sciences Centre (MARE) and Institute of Marine Research (IMAR), University of the Azores, Horta, Portugal
Isabel Sousa-Pinto
Affiliation:
Centre for Marine and Environmental Research, CIIMAR, and Faculty of Sciences, University of Porto, Portugal
Puri Veiga
Affiliation:
Centre for Marine and Environmental Research, CIIMAR, and Faculty of Sciences, University of Porto, Portugal
Jesús Troncoso
Affiliation:
Department of Ecology and Animal Biology, ECIMAT, Station of Marine Sciences of Toralla, University of Vigo, Vigo, Spain
Xabier Guinda
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Santander, Spain
Jose Antonio Juanes De La Pena
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Santander, Spain
Araceli Puente
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Santander, Spain
Free Espinosa
Affiliation:
Universidad de Sevilla, Sevilla, Spain
Angel Pérez-Ruzafa
Affiliation:
Department of Ecology and Hydrology, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Murcia, Spain
Matt Frost
Affiliation:
Marine Biological Association, Plymouth, UK
Caroline Louise Mcneill
Affiliation:
Marine Biological Association, Plymouth, UK
Ohad Peleg
Affiliation:
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Gil Rilov
Affiliation:
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Corresponding
E-mail address:

Abstract

Within the COST action EMBOS (European Marine Biodiversity Observatory System) the degree and variation of the diversity and densities of soft-bottom communities from the lower intertidal or the shallow subtidal was measured at 28 marine sites along the European coastline (Baltic, Atlantic, Mediterranean) using jointly agreed and harmonized protocols, tools and indicators. The hypothesis tested was that the diversity for all taxonomic groups would decrease with increasing latitude. The EMBOS system delivered accurate and comparable data on the diversity and densities of the soft sediment macrozoobenthic community over a large-scale gradient along the European coastline. In contrast to general biogeographic theory, species diversity showed no linear relationship with latitude, yet a bell-shaped relation was found. The diversity and densities of benthos were mostly positively correlated with environmental factors such as temperature, salinity, mud and organic matter content in sediment, or wave height, and related with location characteristics such as system type (lagoons, estuaries, open coast) or stratum (intertidal, subtidal). For some relationships, a maximum (e.g. temperature from 15–20°C; mud content of sediment around 40%) or bimodal curve (e.g. salinity) was found. In lagoons the densities were twice higher than in other locations, and at open coasts the diversity was much lower than in other locations. We conclude that latitudinal trends and regional differences in diversity and densities are strongly influenced by, i.e. merely the result of, particular sets and ranges of environmental factors and location characteristics specific to certain areas, such as the Baltic, with typical salinity clines (favouring insects) and the Mediterranean, with higher temperatures (favouring crustaceans). Therefore, eventual trends with latitude are primarily indirect and so can be overcome by local variation of environmental factors.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Attrill, M.J. (2002) A testable linear model for diversity trends in estuaries. Journal of Animal Ecology, 71, 262269.CrossRefGoogle Scholar
Attrill, M.J., Stafford, R. and Rowden, A.A. (2001) Latitudinal diversity patterns in estuarine tidal flats: indications of a global cline. Ecography 24, 318324.CrossRefGoogle Scholar
Bachelet, G. (1990) The choice of a sieving mesh size in the quantitative assessment of marine macrobenthos: a necessary compromise between aims and constraints. Marine Environmental Research 30, 2135.CrossRefGoogle Scholar
Beaugrand, C., Reid, P.C., Ibanez, F., Lindley, J.A. and Edwards, M. (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 16921694.CrossRefGoogle ScholarPubMed
Bishop, J.D.D. and Hartley, J.P. (1986) A comparison of the fauna retained on 0.5 and 1.0 mm meshes from benthic samples taken in the Beatrice Oilfield, Moray Firth, Scotland. Proceedings of the Royal Society of Edinburgh 91B, 247262.Google Scholar
Bonsdorff, E. (2006) Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. Journal of Experimental Marine Biology and Ecology 330, 383391.CrossRefGoogle Scholar
Bricaud, A., Bosc, E. and Antoine, D. (2002) Algal biomass and sea surface temperature in the Mediterranean Basin. Intercomparison of data from various satellite sensors, and implications for primary production estimates. Remote Sensing of Environment 81, 163178.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N. (2006) PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E, p. 192.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edition. Plymouth: Natural Environment Research Council, PRIMER-E, 142 pp.Google Scholar
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., Aguzzi, J., Ballesteros, E., Bianchi, C.N., Corbera, J., Dailianis, T., Danovaro, R., Estrada, M., Froglia, C., Galil, B.S., Gasol, J.M., Gertwagen, R., Gil, J., Guilhaumon, F., Kesner-Reyes, K., Kitsos, M.S., Koukouras, A., Lampadariou, N., Laxamana, E., López-Fé de la Cuadra, C.M., Lotze, H.K., Martin, D., Mouillot, D., Oro, D., Raicevich, S., Rius-Barile, J., Saiz-Salinas, J.I., San Vicente, C., Somot, S., Templado, J., Turon, X., Vafidis, D., Villanueva, R. and Voultsiadou, E. (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5, e11842.CrossRefGoogle ScholarPubMed
Costello, M.J., Bouchet, P., Boxshall, G., Fauchald, K., Gordon, D., Hoeksema, B.W., Poore, G.C.B., van Soest, R.W.M., Stöhr, S., Walter, T.C., Vanhoorne, B., Decock, W. and Appeltans, W. (2013) Global coordination and standardisation in marine biodiversity through the World Register of Marine Species (WoRMS) and related databases. PLoS ONE 8, e51629. doi: 10.1371/journal.pone.0051629.CrossRefGoogle ScholarPubMed
Couto, T., Patricio, J., Neto, J.M., Ceia, F.R., Franco, J. and Marques, J.C. (2010) The influence of mesh size in environmental quality assessment of estuarine macrobenthic communities. Ecological Indicators 10, 11621173.CrossRefGoogle Scholar
Dal Bello, M., Leclerc, J.C., Benedetti-Cecchi, L., Arvanitidis, C., van Avesaath, P., Bachelet, G., Bojanic, N., Como, S., Coppa, S., Coughlan, J., Crowe, T., Degraer, S., Espinosa, F., Faulwetter, S., Frost, M., Guinda, X., Jankowska, E., Jourde, J., Kerckhof, F., Kotta, J., Lavesque, N., de Lucia, G.A., Magni, P., Fernandes de Matos, V.K., Orav-Kotta, H., Pavloudi, C., Pedrotti, M.L., Peleg, O., Juanes de la Pena, J.A., Puente, A., Ribeiro, P., Rigaut-Jalabert, F., Rilov, G., Rousou, M., Rubal, M., Ruginis, T., Ruzafa, A., Silva, T., Simon, N., Sousa-Pinto, I., Troncoso, J., Warzocha, J., Weslawski, J.M. and Hummel, H. (2016) Consistent patterns of spatial variability between Atlantic and Mediterranean rocky shores. Journal of the Marine Biological Association of the United Kingdom.Google Scholar
Dean, W.E. (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
De Falco, G., Magni, P., Teräsvuori, L. and Matteucci, G. (2004) Sediment grain size and organic carbon distribution in the Cabras lagoon (Sardinia, west Mediterranean). Chemistry and Ecology 20, S367S377.CrossRefGoogle Scholar
De Wit, R. (2011) Biodiversity of coastal lagoon ecosystems and their vulnerability to global change. In Gillo, O. & Venora, G. (eds) Ecosystems biodiversity. Rijeka, Croatia: Intech., pp. 2940.Google Scholar
Elmgren, R. and Hill, C. (1995) Ecosystem function at low biodiversity – the Baltic example. In Ormond, R.F.G., Gage, J.D. and Angel, M.V. (eds) Marine biodiversity: patterns and processes. Cambridge: Cambridge University Press, pp. 319336.Google Scholar
Escaravage, V., Herman, P. M. J., Merckx, B., Wlodarska-Kowalczuk, M., Amouroux, J. M., Degraer, S., Grémare, A., Heip, C. H. R., Hummel, H., Karakassis, I., Labrune, C. and Willems, W. (2009) Distribution patterns of macrofaunal species diversity in subtidal soft sediments: biodiversity-productivity relationships from the MacroBen database. Marine Ecology Progress Series 382, 253264.CrossRefGoogle Scholar
Ferraro, S.P. and Cole, F.A. (2004) Optimal benthic macrofaunal sampling protocol for detecting differences among four habitats in Willapa Bay, Washington, USA. Estuaries 27, 10141025.CrossRefGoogle Scholar
Fischer-Piètte, E. (1955) Répartition le long des côtes septentrionales de l'Espagne des principales espèces peuplant les rochers intercotidaux. Annales de l'Institut Oceanographique 31, 38124.Google Scholar
Gaston, K.J. (2000) Global patterns in biodiversity. Nature 405, 220227.CrossRefGoogle ScholarPubMed
Heip, C. and Hummel, H. (2000) Establishing a framework for the implementation of marine biodiversity research in Europe. Strasbourg: European Science Foundation, ESF Marine Board Report, 48 pp.Google Scholar
Heip, C., Hummel, H., van Avesaath, P., Appeltans, W., Arvanitidis, C., Aspden, R., Austen, M., Boero, F., Bouma, T.J., Boxshall, G., Buchholz, F., Crowe, T., Delaney, A., Deprez, T., Emblow, C., Feral, J.P., Gasol, J.M., Gooday, A., Harder, J., Ianora, A., Kraberg, A., Mackenzie, B., Ojaveer, H., Paterson, D., Rumohr, H., Schiedek, D., Sokolowski, A., Somerfield, P., Sousa Pinto, I., Vincx, M., Weslawski, J.M. and Nash, R. (2009) Marine biodiversity and ecosystem functioning, ISSN 2009–2539, 91 pp.Google Scholar
Hillebrand, H. (2004) On the generality of the latitudinal diversity gradient. American Naturalist 163, 192211.CrossRefGoogle ScholarPubMed
Hummel, H., Bogaards, R.H., Bachelet, G., Caron, F., Sola, J.C. and Amiard-Triquet, C. (2000) The respiratory performance and survival of the bivalve Macoma balthica at the southern limit of its distribution area: a translocation experiment. Journal of Experimental Marine Biology and Ecology 251, 85102.CrossRefGoogle ScholarPubMed
Hyland, J., Balthis, L.W., Karakassis, I., Magni, P., Petrov, A., Shine, J.R., Vestergaard, O. and Warwick, R. (2005) Organic carbon content of sediments as an indicator of stress in the marine benthos. Marine Ecology Progress Series 295, 91103.CrossRefGoogle Scholar
Jansen, J.M., Pronker, S.A.E., Kube, S., Sokolowski, A., Sola, J.C., Marquiegui, M., Schiedek, D., Wolowicz, M., Wendelaar Bonga, S. and Hummel, H. (2007) Geographic and seasonal patterns and limits in the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations. Oecologia 154, 2334.CrossRefGoogle ScholarPubMed
Jenkins, S.R., Moore, P., Burrows, M.T., Garbary, D.J., Hawkins, S.J., Ingolfsson, A., Sebens, K.P., Snelgrove, P.V.R., Wethey, D.S. and Woodin, S.A. (2008) Comparative ecology of North Atlantic shores: do differences in players matter for process? Ecology 89 (Supplement), S3S23.CrossRefGoogle ScholarPubMed
Kotta, J., Orav-Kotta, H., Jänes, H., Hummel, H., Arvanitidis, C., van Avesaath, P., Bachelet, G., Benedetti-Cecchi, L., Bojanic, N., Como, S., Coppa, S., Coughlan, J., Crowe, T., Dal Bello, M., Degraer, S., Juanes de La Pena, J.A., Fernandes de Matos, V.K., Espinosa, F., Faulwetter, S., Frost, M., Guinda, X., Jankowska, E., Jourde, J., Kerckhof, F., Lavesque, N., Leclerc, J.C., Magni, P., Pavloudi, C., Pedrotti, M.L., Peleg, O., Pérez-Ruzafa, A., Puente, A., Ribeiro, P., Rilov, G., Rousou, M., Ruginis, T., Silva, T., Simon, N., Sousa-Pinto, I., Troncoso, J., Warzocha, J. and Weslawski, J.M. (2016) Essence of the patterns of cover and richness of intertidal hard bottom communities: a pan-European study.. Journal of the Marine Biological Association of the United Kingdom.Google Scholar
Lejeusne, C., Chevaldonne, P., Pergent-Martini, C., Boudouresque, C.F. and Perez, T. (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends in Ecology and Evolution 25, 250260.CrossRefGoogle ScholarPubMed
Levitus, S., Antonov, J.I., Baranova, O.K., Boyer, T.P., Coleman, C.L., Garcia, H.E., Grodsky, A.I., Johnson, D.R., Locarnini, R.A., Mishonov, A.V., Reagan, J.R., Sazama, C.L., Seidov, D., Smolyar, I., Yarosh, E.S. and Zweng, M.M. (2013) The world ocean database. Data Science Journal 12, WDS229WDS234.CrossRefGoogle Scholar
Magni, P., De Falco, G., Como, S., Casu, D., Floris, A., Petrov, A.N., Castelli, A. and Perilli, A. (2008) Distribution and ecological relevance of fine sediments in organic-enriched lagoons: the case study of the Cabras lagoon (Sardinia, Italy). Marine Pollution Bulletin 56, 549564.CrossRefGoogle Scholar
Magni, P., Rajagopal, S., Como, S., Jansen, J.M., van der Velde, G. and Hummel, H. (2013) δ13C and δ15N variations in organic matter pools, Mytilus spp. and Macoma balthica along the European Atlantic coast. Marine Biology 160, 541552.CrossRefGoogle Scholar
McDonald, J.H. (2014) Handbook of biological statistics, 3rd edition. Baltimore, MD: Sparky House Publishing, 213219.Google Scholar
Mieszkowska, N., Kendall, M.A., Hawkins, S.J., Leaper, R., Williamson, P., Hardman-Mountford, N.J. and Southward, A.J. (2006) Change in the range of some common rocky shore species in Britain – a response to climate change? Hydrobiologia 555, 241251.CrossRefGoogle Scholar
Miththapala, S. (2013) Lagoons and estuaries. Coastal ecosystems series, Volume 4. Colombo, Sri Lanka: Country Office, IUCN, 73 pp.Google Scholar
Newell, R.C. (1979) Biology of intertidal organisms, 3rd edition. Faversham: Marine Ecological Surveys, 781 pp.Google Scholar
Nordström, M., Lindblad, P., Aarnio, K. and Bonsdorff, E. (2010) A neighbour is a neighbour? Consumer diversity, trophic function, and spatial variability in benthic food web. Journal of Experimental Marine Biology and Ecology 391, 101111.CrossRefGoogle Scholar
Pavloudi, C., Faulwetter, S., Keklikoglou, K., Vasileiadou, K., Chatzinikolaou, E., Mavraki, D., Nikolopoulou, M., Bailly, N., Rousou, M., Kotta, J., Orav-Kotta, H., Bachelet, G., Lavesque, N., Benedetti-Cecchi, L., Dal Bello, M., Bojanic, N., Como, S., Coppa, S., Magni, P., Coughlan, J., Crowe, T., Degraer, S., Juanes de la Pena, J.A., Guinda, X., Puente, A., Fernandes de Matos, V.K., Ribeiro, P., Espinosa, F., Kerckhof, F., Jankowska, E., Weslawski, J.M., Peleg, O., Rilov, G., Pérez-Ruzafa, A., Ruginis, T., Jourde, J., Leclerc, J.C., Simon, N., Pedrotti, M.L., Silva, T., Sousa-Pinto, I., Rubal, M., Troncoso, J., Warzocha, J., van Avesaath, P., Frost, M., Hummel, H. and Arvanitidis, C. (2016) Taxonomic vs functional patterns across European marine benthic habitats. Journal of the Marine Biological Association of the United Kingdom.Google Scholar
Pearson, T.H. and Rosenberg, R. (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology, Annual Reviews 16, 229311.Google Scholar
Puente, A., Guinda, X., Juanes de la Pena, J.A., Echavarri-Erasun, B., Ramos, E., de la Hoz, C.F., Degraer, S., Kerckhof, F., Bojanic, N., Rousou, M., Orav-Kotta, H., Kotta, J., Jourde, J., Pedrotti, M.L., Leclerc, J.C., Simon, N., Bachelet, G., Lavesque, N., Arvanitidis, C., Pavloudi, C., Faulwetter, S., Crowe, T., Coughlan, J., Benedetti-Cecchi, L., Dal Bello, M., Magni, P., Como, S., Coppa, S., de Lucia, A., Ruginis, T., Jankowska, E., Wesławski, J.M., Warzocha, J., Silva, T., Ribeiro, P., Fernandes de Matos, V.K., Sousa-Pinto, I., Troncoso, J., Peleg, O., Rilov., G., Espinosa, F., Pérez-Ruzafa, A., Frost, M., Hummel, H. and van Avesaath, P. (2016) The role of physical variables in biodiversity patterns of intertidal macroalgae along European coasts. Journal of the Marine Biological Association of the United Kingdom.Google Scholar
Rees, H.L. (1984) A note on mesh selection and sampling efficiency in benthic studies. Marine Pollution Bulletin 15, 225229.CrossRefGoogle Scholar
Reguero, B.G., Menéndez, M., Méndez, F.J., Mínguez, R. and Losada, I.J. (2012) A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coast England 65, 3855.CrossRefGoogle Scholar
Remane, A. (1934) Die Brackwasserfauna. Zoologischer Anzeiger (Suppl.), 7, 3474.Google Scholar
Renaud, P.E., Webb, T.J., Bjørgesæter, A., Karakassis, I., Kędra, M., Kendall, M.A., Labrune, C., Lampadariou, N., Somerfield, P.J., Włodarska-Kowalczuk, M., Van den Berghe, E., Claus, S., Aleffi, I.F., Amouroux, J.M., Bryne, K.H., Cochrane, S.J., Dahle, S., Degraer, S., Denisenko, G., Deprez, T., Dounas, C., Fleischer, D., Gil, J., Grémare, A., Janas, U., Mackie, A.S.Y., Palerud, R., Rumohr, H., Sardá, R., Speybroeck, J., Taboada, S., Van Hoey, G., Węsławski, J.M., Whomersley, P. and Zettler, M.L. (2009) Continental-scale patterns in benthic invertebrate diversity: insights from the MacroBen database. Marine Ecology Progress Series 382, 239252.CrossRefGoogle Scholar
Rex, M.A., Stuart, C.T. and Coyne, G. (2000) Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic. Proceedings of the National Academy of Sciences USA 97, 40824085.CrossRefGoogle ScholarPubMed
Rohde, K. (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514527.CrossRefGoogle Scholar
Roy, K., Jablonski, D., Valentine, J.W. and Rosenberg, G. (1998) Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95, 36993702.CrossRefGoogle ScholarPubMed
Sauvageau, C. (1897) Note préliminaire sur les algues marines du Golfe de Gascogne. Journal de Botanique 11, 166307.Google Scholar
Schopf, T.J.M., Fisher, J.B. and Smith, C.A.F. III (1978) Is the marine latitudinal gradient merely another example of the species area curve? In Battaglia, B. and Beardmore, J.A. (eds) Marine organisms: genetics, ecology and evolution. New York, NY: Plenum Press, pp. 365389.Google Scholar
Stark, J.D., Donlon, C.J., Martin, M.J. and McCulloch, M.E. (2007) OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. In OCEANS 2007. Marine challenges: coastline to deep sea. Aberdeen: IEEE Ocean Engineering Society, pp. 331334. doi: 10.1109/OCEANSE.2007.4302251.Google Scholar
Stehli, F.G., McAlester, A.L. and Helsley, C.E. (1967) Taxonomic diversity of recent bivalves and some implications for geology. Geological Society of America Bulletin 78, 455466.CrossRefGoogle Scholar
Ter Braak, C.J.F. and Smilauer, P. (1998) CANOCO reference manual and user's guide to Canoco for Windows: software for canonical community ordination (version 4). Ithaca, NY: Microcomputer Power.Google Scholar
Willig, M.R., Kaufman, D.M. and Stevens, R.D. (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34, 273309.CrossRefGoogle Scholar
Zettler, M.L., Karlsson, A., Kontula, T., Gruszka, P., Laine, A.O., Herkül, K., Schiele, K.S., Maximov, A. and Haldin, J. (2014) Biodiversity gradient in the Baltic Sea: a comprehensive inventory of macrozoobenthos data. Helgoland Marine Research 68, 4957.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 23
Total number of PDF views: 239 *
View data table for this chart

* Views captured on Cambridge Core between 14th September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Geographic patterns of biodiversity in European coastal marine benthos
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Geographic patterns of biodiversity in European coastal marine benthos
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Geographic patterns of biodiversity in European coastal marine benthos
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *