Skip to main content Accessibility help
×
Home

THE INTERSECTION OF TWO INFINITE MATROIDS

  • RON AHARONI (a1) and RAN ZIV (a2)

Abstract

Conjecture: Let [Mscr ] and [Nscr ] be two matroids (possibly of infinite ranks) on the same set S. Then there exists a set I independent in both [Mscr ] and [Nscr ], which can be partitioned as I=HK, where sp[Mscr ](H)∪sp[Nscr ](K)=S. This conjecture is an extension of Edmonds' matroid intersection theorem to the infinite case. We prove the conjecture when one of the matroids (say [Mscr ]) is the sum of countably many matroids of finite rank (the other matroid being general). For the proof we have also to answer the following question: when does there exist a subset of S which is spanning for [Mscr ] and independent in [Nscr ]?

Copyright

Related content

Powered by UNSILO

THE INTERSECTION OF TWO INFINITE MATROIDS

  • RON AHARONI (a1) and RAN ZIV (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.