Skip to main content Accessibility help
×
Home

DERIVATIONS ON REAL AND COMPLEX JB*-TRIPLES

  • TONY HO (a1), JUAN MARTINEZ-MORENO (a2), ANTONIO M. PERALTA (a2) and BERNARD RUSSO (a1)

Abstract

At the regional conference held at the University of California, Irvine, in 1985 [24], Harald Upmeier posed three basic questions regarding derivations on JB*-triples:

(1) Are derivations automatically bounded?

(2) When are all bounded derivations inner?

(3) Can bounded derivations be approximated by inner derivations?

These three questions had all been answered in the binary cases. Question 1 was answered affirmatively by Sakai [17] for C*-algebras and by Upmeier [23] for JB-algebras. Question 2 was answered by Sakai [18] and Kadison [12] for von Neumann algebras and by Upmeier [23] for JW-algebras. Question 3 was answered by Upmeier [23] for JB-algebras, and it follows trivially from the Kadison–Sakai answer to question 2 in the case of C*-algebras.

In the ternary case, both question 1 and question 3 were answered by Barton and Friedman in [3] for complex JB*-triples. In this paper, we consider question 2 for real and complex JBW*-triples and question 1 and question 3 for real JB*-triples. A real or complex JB*-triple is said to have the inner derivation property if every derivation on it is inner. By pure algebra, every finite-dimensional JB*-triple has the inner derivation property. Our main results, Theorems 2, 3 and 4 and Corollaries 2 and 3 determine which of the infinite-dimensional real or complex Cartan factors have the inner derivation property.

Copyright

DERIVATIONS ON REAL AND COMPLEX JB*-TRIPLES

  • TONY HO (a1), JUAN MARTINEZ-MORENO (a2), ANTONIO M. PERALTA (a2) and BERNARD RUSSO (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed