Skip to main content Accessibility help

Worth the Wait: Delayed Recall after 1 Week Predicts Cognitive and Medial Temporal Lobe Trajectories in Older Adults



We evaluated whether memory recall following an extended (1 week) delay predicts cognitive and brain structural trajectories in older adults.


Clinically normal older adults (52–92 years old) were followed longitudinally for up to 8 years after completing a memory paradigm at baseline [Story Recall Test (SRT)] that assessed delayed recall at 30 min and 1 week. Subsets of the cohort underwent neuroimaging (N = 134, mean age = 75) and neuropsychological testing (N = 178–207, mean ages = 74–76) at annual study visits occurring approximately 15–18 months apart. Mixed-effects regression models evaluated if baseline SRT performance predicted longitudinal changes in gray matter volumes and cognitive composite scores, controlling for demographics.


Worse SRT 1-week recall was associated with more precipitous rates of longitudinal decline in medial temporal lobe volumes (p = .037), episodic memory (p = .003), and executive functioning (p = .011), but not occipital lobe or total gray matter volumes (demonstrating neuroanatomical specificity; p > .58). By contrast, SRT 30-min recall was only associated with longitudinal decline in executive functioning (p = .044).


Memory paradigms that capture longer-term recall may be particularly sensitive to age-related medial temporal lobe changes and neurodegenerative disease trajectories.


Corresponding author

*Correspondence and reprint requests to: Dr. Cutter A. Lindbergh, Memory and Aging Center, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143, USA. E-mail:


Hide All
Angel, L., Bastin, C., Genon, S., Salmon, E., Fay, S., Balteau, E., … Collette, F. (2016). Neural correlates of successful memory retrieval in aging: do executive functioning and task difficulty matter? Brain Research, 1631, 5371.
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95113.
Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112(4), 389404.
Butler, C.R., Bhaduri, A., Acosta-Cabronero, J., Nestor, P.J., Kapur, N., Graham, K.S., … Zeman, A.Z. (2009). Transient epileptic amnesia: regional brain atrophy and its relationship to memory deficits. Brain, 132(2), 357368.
Butler, C.R., Graham, K.S., Hodges, J.R., Kapur, N., Wardlaw, J.M., & Zeman, A.Z.J. (2007). The syndrome of transient epileptic amnesia. Annals of Neurology, 61(6), 587598.
Casaletto, K.B., Marx, G., Dutt, S., Neuhaus, J., Saloner, R., Kritikos, L., … Kramer, J.H. (2017). Is “Learning” episodic memory? Distinct cognitive and neuroanatomic correlates of immediate recall during learning trials in neurologically normal aging and neurodegenerative cohorts. Neuropsychologia, 102, 1928.
Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., … Killiany, R.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968980.
Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., … Silverberg, N. (2018). NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535562.
Kerchner, G.A., Racine, C.A., Hale, S., Wilheim, R., Laluz, V., Miller, B.L., & Kramer, J.H. (2012). Cognitive processing speed in older adults: relationship with white matter integrity. PLoS One, 7(11), e50425.
Lezak, M. (1995). Neuropsychological assessment. New York: Oxford University Press.
Lezak, M., Howieson, D., Bigler, E., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York: Oxford University Press.
Lindbergh, C.A., Casaletto, K.B., Staffaroni, A.M., Elahi, F., Walters, S.M., You, M., … Kramer, J.H. (2019). Systemic tumor necrosis factor-alpha trajectories relate to brain health in typically aging older adults. The Journals of Gerontology: Series A, 75(8), 15581565.
Loewenstein, D.A., Curiel, R.E., Duara, R., & Buschke, H. (2018). Novel cognitive paradigms for the detection of memory impairment in preclinical Alzheimer’s disease. Assessment, 25(3), 348359.
Manes, F., Serrano, C., Calcagno, M.L., Cardozo, J., & Hodges, J. (2008). Accelerated forgetting in subjects with memory complaints: a new form of mild cognitive impairment? Journal of Neurology, 255(7), 10671070.
Radulovic, J., Jovasevic, V., & Meyer, M.A. (2017). Neurobiological mechanisms of state-dependent learning. Current Opinion in Neurobiology, 45, 9298.
Saloner, R., Casaletto, K.B., Marx, G., Dutt, S., Vanden Bussche, A.B., You, M., … Kramer, J.H. (2018). Performance on a 1-week delayed recall task is associated with medial temporal lobe structures in neurologically normal older adults. The Clinical Neuropsychologist, 32(3), 456467.
Squire, L.R., Genzel, L., Wixted, J.T., & Morris, R.G. (2015). Memory consolidation. Cold Spring Harbor Perspectives in Biology, 7(8), 121.
Squire, L.R., Stark, C.E.L., & Clark, R.E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27(1), 279306.
Walsh, C.M., Wilkins, S., Bettcher, B.M., Butler, C.R., Miller, B.L., & Kramer, J.H. (2014). Memory consolidation in aging and MCI after 1 week. Neuropsychology, 28(2), 273280.
Weston, P.S.J., Nicholas, J.M., Henley, S.M.D., Liang, Y., Macpherson, K., Donnachie, E., … Fox, N.C. (2018). Accelerated long-term forgetting in presymptomatic autosomal dominant Alzheimer’s disease: A cross-sectional study. The Lancet Neurology, 17(2), 123.


Type Description Title
Supplementary materials

Lindbergh et al. supplementary material
Lindbergh et al. supplementary material

 Word (255 KB)
255 KB

Worth the Wait: Delayed Recall after 1 Week Predicts Cognitive and Medial Temporal Lobe Trajectories in Older Adults


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.