Skip to main content Accessibility help
×
Home

White Matter Correlates of Cognitive Performance on the UCSF Brain Health Assessment

  • Andrea G. Alioto (a1), Paige Mumford (a2), Amy Wolf (a3), Kaitlin B. Casaletto (a3), Sabrina Erlhoff (a3), Tacie Moskowitz (a3), Joel H. Kramer (a3), Katherine P. Rankin (a3) and Katherine L. Possin (a3)...

Abstract

Objective: White matter (WM) microstructural changes are increasingly recognized as a mechanism of age-related cognitive differences. This study examined the associations between patterns of WM microstructure and cognitive performance on the University of California, San Francisco (UCSF) Brain Health Assessment (BHA) subtests of memory (Favorites), executive functions and speed (Match), and visuospatial skills (Line Orientation) within a sample of older adults. Method: Fractional anisotropy (FA) in WM tracts and BHA performance were examined in 84 older adults diagnosed as neurologically healthy (47), with mild cognitive impairment (19), or with dementia (18). The relationships between FA and subtest performances were evaluated using regression analyses. We then explored whether regional WM predicted performance after accounting for variance explained by global FA. Results: Memory performance was associated with FA of the fornix and the superior cerebellar peduncle; and executive functions and speed, with the body of the corpus callosum. The fornix–memory association and the corpus callosum–executive association remained significant after accounting for global FA. Neither tract-based nor global FA was associated with visuospatial performance. Conclusions: Memory and executive functions are associated with different patterns of WM diffusivity. Findings add insight into WM alterations underlying age- and disease-related cognitive decline.

Copyright

Corresponding author

Correspondence and reprint requests to: Andrea G. Alioto, Alzheimer’s Disease Center- East Bay, University of California, Davis 100 N. Wiget Lane, Suite 150, Walnut Creek, CA 94598. E-mail: agalioto@ucdavis.edu

References

Hide All
Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, D.M., Jagust, W.J., Petersen, P.C., Snyder, P.J., Carrillo, M.C., Thies, B., & Phelps, C.H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging- Alzhiemer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 270279. doi: 10.1016/j.jalz.2011.03.008
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). Arlington, VA: American Psychiatric Association.
Bennett, I.J. & Madden, D.J. (2014). Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience, 276, 187205. doi: 10.1016/j.neuroscience.2013.11.026
Bettcher, B.M., Mungas, D., Patel, N., Elofson, J., Dutt, S., Wynn, M., Watson, C.L., Stephens, M., Walsh, C.M., & Kramer, J.H. (2016). Neuroanatomical substrates of executive functions: beyond prefrontal structures. Neuropsychologia, 85, 100109. doi: 10.1016/j.neuropsychologia.2016.03.001
Brickman, A.M., Honig, L.S., Scarmeas, N., Tatarina, O., Sanders, L., Albert, M.S., Brandt, J., Blacker, D., & Stern, Y. (2008). Measuring cerebral atrophy and white matter hyperintensity burden to predict the rate of cognitive decline in Alzheimer disease. Archives of Neurology, 65(9), 12021208. doi: 10.1001/archneur.65.9.1202
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155159.
Fischer, F.U., Wolf, D., Scheurich, A., Fellgiebel, A., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Altered whole-brain white matter networks in preclinical Alzheimer’s disease. NeuroImage: Clinical, 8, 660666. doi: 10.1016/j.nicl.2015.06.007
Fletcher, P.C. & Henson, R.N.A. (2001). Frontal lobes and human memory: insights from functional neuroimaging. Brain, 124(5), 849881. doi: 10.1093/brain/124.5.849
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.
Garyfallidis, E., Bret, M., Amirbekian, B., Rokem, A., van der Walt, S., Descoteaux, M., & Nimmo-Smith, I. (2014). Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroimformatics, 8, 8. doi: 10.3389/fnif.2014.00008
Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800802.
Jacobs, H.I.L., Leritz, E.C., Williams, V.J., Van Boxtel, M.P.J., van der Elst, W., Jolles, J., Verhey, F.R.J., McGlinchey, R.E., Milberg, W.P., & Salat, D.H. (2013). Association between white matter microstructure, executive functioning, and processing speed in older adults: the impact of vascular health. Human Brain Mapping, 34(1), 7795. doi: 10.1002/hbm.21412
Mori, S., Wakana, S, van Zijl, P.C.M., & Nagae-Poetscher, L.M. (2005). MRI atlas of human white matter (1st ed.). Amsterdam: Elsevier.
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43(11), 24122412. doi: 10.1212/WNL.43.11.2412-a
Nowrangi, M.A. & Rosenberg, P.B. (2015). The fornix in mild cognitive impairment and Alzheimer’s disease. Frontiers in Aging Neuroscience, 7, 17. doi:10.3389/fnagi.2015.00001
Possin, K.L., Moskowitz, T., Erlhoff, S.J., Rogers, K., Johnson, E., Steele, N.Z.R., Higgins, J.J., Stiver, J., Alioto, A.G., Farias, S.T., Miller, B.L., & Rankin, K.R. (2018). The Brain Health Assessment for detecting and diagnosing neurocognitive disorders. Journal of the American Geriatrics Society, 66(1), 150156. doi: 10.1111/jgs.15208
Sexton, C.E., Ukwuori, G.K., Flippini, N., Mackay, C.E., & Ebmeier, K.P. (2011). A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 32(12), 2322.e5–2322.318. doi: 10.1016/j.neurobiolaging.2010.05.019
Tranel, D., Vianna, E., Manzel, K., Damasio, H., & Grabowski, T. (2009). Neuroanatomical correlates of the Benton Facial Recognition Test and Judgment of Line Orientation Test. Journal of Clinical and Experimental Neuropsychology, 31(2), 219233. doi: 10.1080/13803390802317542
Vernooij, M.W., Ikram, M.A., Vrooman, H.A., Wielopolski, P.A., Krestin, G.P., Hofman, A., Niessen, W.J., Van der Lugt, A., & Breteler, M.M.B. (2009). White matter microstructural integrity and cognitive function in a general elderly population. Archives of General Psychiatry, 66(60), 545553. doi: 10.1001/archgenpsychiatry.2009.5
Zhang, H., Yushkevich, P.A., Alexander, D.C., & Gee, J.C. (2006). Deformable registration of diffusion tensor MR images with explicit orientation optimization. Medical Image Analysis, 10(5), 764785. doi: 10.1016/j.media.2006.06.004

Keywords

Type Description Title
WORD
Supplementary materials

Alioto et al. supplementary material
Appendix S1

 Word (500 KB)
500 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed