Skip to main content Accessibility help
×
Home

Visual versus Verbal Working Memory in Statistically Determined Patients with Mild Cognitive Impairment: On behalf of the Consortium for Clinical and Epidemiological Neuropsychological Data Analysis (CENDA)

  • Sheina Emrani (a1), Victor Wasserman (a1), Emily Matusz (a2), David Miller (a3), Melissa Lamar (a4), Catherine C. Price (a5), Terrie Beth Ginsberg (a2), Rhoda Au (a6) (a7), Rod Swenson (a8) and David J. Libon (a1) (a2)...

Abstract

Objective:

Previous research in mild cognitive impairment (MCI) suggests that visual episodic memory impairment may emerge before analogous verbal episodic memory impairment. The current study examined working memory (WM) test performance in MCI to assess whether patients present with greater visual versus verbal WM impairment. WM performance was also assessed in relation to hippocampal occupancy (HO), a ratio of hippocampal volume to ventricular dilation adjusted for demographic variables and intracranial volume.

Methods:

Jak et al. (2009) (The American Journal of Geriatric Psychiatry, 17, 368–375) and Edmonds, Delano-Wood, Galasko, Salmon, & Bondi (2015) (Journal of Alzheimer’s Disease47(1), 231–242) criteria classify patients into four groups: little to no cognitive impairment (non-MCI); subtle cognitive impairment (SCI); amnestic MCI (aMCI); and a combined mixed/dysexecutive MCI (mixed/dys MCI). WM was assessed using co-normed Wechsler Adult Intelligence Scale-IV (WAIS-IV) Digit Span Backwards and Wechsler Memory Scale-IV (WMS-IV) Symbol Span Z-scores.

Results:

Between-group analyses found worse WMS-IV Symbol Span and WAIS-IV Digit Span Backwards performance for mixed/dys MCI compared to non-MCI patients. Within-group analyses found no differences for non-MCI patients; however, all other groups scored lower on WMS-IV Symbol Span than WAIS-IV Digit Span Backwards. Regression analysis with HO as the dependent variable was statistically significant for WMS-IV Symbol Span performance. WAIS-IV Digit Span Backwards performance failed to reach statistical significance.

Conclusions:

Worse WMS-IV Symbol Span performance was observed in patient groups with measurable neuropsychological impairment and better WMS-IV Symbol Span performance was associated with higher HO ratios. These results suggest that visual WM may be particularly sensitive to emergent illness compared to analogous verbal WM tests.

Copyright

Corresponding author

*Correspondence and reprint requests to: David J. Libon, Rowan University, School of Osteopathic Medicine, Glassboro, NJ, USA; New Jersey Institute for Successful Aging, 42 E Laurel Rd, Stratford, NJ 08084, USA. E-mail: libon@rowan.edu

References

Hide All
Belleville, S., Fouquet, C., Hudon, C., Zomahoun, H.T.V., & Croteau, J. (2017). Consortium for the early identification of Alzheimer’s disease-Quebec. Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: a systematic review and meta-analysis. Neuropsychology Review, 27(4), 328353.
Bohbot, V.D., Kalina, M., Stepankova, K., Spackova, N., Petrides, M., & Nadel, L.Y.N.N. (1998). Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. Neuropsychologia, 36(11), 12171238.
Bublak, P., Redel, P., Sorg, C., Kurz, A., Förstl, H., Müller, H.J., Schneider, W.X., & Finke, K. (2011). Staged decline of visual processing capacity in mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 32(7), 12191230.
Burgess, N., Maguire, E.A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625641.
Carew, T.G., Lamar, M., Cloud, B.S., Grossman, M., & Libon, D.J. (1997). Impairment in category fluency in ischaemic vascular dementia. Neuropsychology 11, 400412.
Chein, J.M., Moore, A.B., & Conway, A.R. (2011). Domain-general mechanisms of complex working memory span. Neuroimage, 54(1), 550559.
Chow, N., Hwang, K.S., Hurtz, S., Green, A.E., Somme, J.H., Thompson, P.M., Elashoff, D.A., Jack, C.R., Weiner, M., & Apostolova, L.G. (2015). Comparing 3T and 1.5 T MRI for mapping hippocampal atrophy in the Alzheimer’s Disease Neuroimaging Initiative. American Journal of Neuroradiology, 36(4), 653660.
Clare, R., King, V.G., Wirenfeldt, M., & Vinters, H.V. (2010). Synapse loss in dementias. Journal of Neuroscience Research, 88(10), 20832090.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge, Academic.
Crane, J. & Milner, B. (2005). What went where? Impaired object-location learning in patients with right hippocampal lesions. Hippocampus, 15(2), 216231.
Davachi, L. & Wagner, A.D. (2002). Hippocampal contributions to episodic encoding: insights from relational and item-based learning. Journal of Neurophysiology, 88(2), 982990.
De Anna, F., Felician, O., Barbeau, E., Mancini, J., Didic, M., & Ceccaldi, M. (2014). Cognitive changes in mild cognitive impairment patients with impaired visual recognition memory. Neuropsychology, 28(1), 98.
de Toledo-Morrell, L., Dickerson, B., Sullivan, M.P., Spanovic, C., Wilson, R., & Bennett, D.A. (2000). Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer’s disease. Hippocampus, 10(2), 136142.
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (2000). CVLT-II: California Verbal Learning Test: Adult Version. San Antonio, TX: Psychological Corporation.
Delis, D.C., Kramer, J.H., Kaplan, E., & Thompkins, B.A.O. (1987). CVLT: California Verbal Learning Test-Adult Version: Manual. San Antonio, TX: Psychological Corporation.
Didic, M., Felician, O., Barbeau, E.J., Mancini, J., Latger-Florence, C., Tramoni, E., & Ceccaldi, M. (2013). Impaired visual recognition memory predicts Alzheimer’s disease in amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 35(5–6), 291299.
Edmonds, E.C., Delano-Wood, L., Galasko, D.R., Salmon, D.P., & Bondi, M.W. (2015). Subtle cognitive decline and biomarker staging in preclinical Alzheimer’s disease. Journal of Alzheimer’s Disease, 47(1), 231242.
Eichenbaum, H., Cohen, N.J., & Squire, L.R. (2001). Book review-The many faces of memory-From Conditioning to Conscious Recollection: Memory Systems of the Brain. Nature Neuroscience, 4(9), 867868.
Elosúa, M.R., Ciudad, M.J., & Contreras, M.J. (2017). Gender differences in verbal and visuospatial working memory tasks in patients with mild cognitive impairment and Alzheimer disease. Dementia and Geriatric Cognitive Disorders Extra, 7(1), 101108.
Emrani, S., Libon, D.J., Lamar, M., Price, C.C., Jefferson, A.L., Gifford, K.A., Hohman, T.J., Nation, D.A., Delano-Wood, L., Jak, A., & Bangen, K.J. (2018). Assessing working memory in mild cognitive impairment with serial order recall. Journal of Alzheimer’s Disease: JAD, 61(3), 917928. https://doi.org/10.3233/JAD-170555
Enders, C.K. (2003). Performing multivariate group comparisons following a statistically significant MANOVA. Measurement and Evaluation in Counseling and Development, 36, 4056.
Eppig, J., Wambach, D., Nieves, C., Price, C.C., Lamar, M., Delano-Wood, L., … & Lippa, C. (2012). Dysexecutive functioning in mild cognitive impairment: Derailment in temporal gradients. Journal of the International Neuropsychological Society, 18(1), 2028.
Ezzati, A., Katz, M.J., Zammit, A.R., Lipton, M.L., Zimmerman, M.E., Sliwinski, M.J., & Lipton, R.B. (2016). Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults. Neuropsychologia, 93, 380385.
Farid, N., Girard, H.M., Kemmotsu, K., Smith, M.E., Magda, S.W., Lim, W.Y., Lee, R.R., & McDonald, C.R. (2012). Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy. Radiology, 264(2), 542550.
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.
Fu, H., Rodriguez, G.A., Herman, M., Emrani, S., Nahmani, E., Barrett, G., Figueroa, H.Y., Goldberg, E., Hussaini, S.A., & Duff, K.E. (2017). Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron, 93(3), 533541.
Gillick, B.T. & Zirpel, L. (2012). Neuroplasticity: an appreciation from synapse to system. Archives of Physical Medicine and Rehabilitation, 93(10), 18461855.
Habeck, C., Rakitin, B., Steffener, J., & Stern, Y. (2012). Contrasting visual working memory for verbal and non-verbal material with multivariate analysis of fMRI. Brain research, 1467, 2741.
Hampstead, B.M., Stringer, A.Y., Stilla, R.F., Amaraneni, A., & Sathian, K. (2011). Where did I put that? Patients with amnestic mild cognitive impairment demonstrate widespread reductions in activity during the encoding of ecologically relevant object-location associations. Neuropsychologia, 49, 23492361.
Heister, D., Brewer, J.B., Magda, S., Blennow, K., & McEvoy, L.K. (2011). Alzheimer’s Disease Neuroimaging Initiative. Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology, 77(17), 16191628.
Huberty, C.J. & Morris, J.D. (1989). Multivariate analysis versus multiple univariate analyses. Psychological Bulletin, 105, 302308.
Hultsch, D.F., Hertzog, C., Small, B.J., & Dixon, R.A. (1999). Use it or lose it: engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14(2), 245.
Jak, A.J., Bondi, M.W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D.P., Delis, D. C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. The American Journal of Geriatric Psychiatry, 17, 368375.
Jak, A.J., Panizzon, M.S., Spoon, K.M., Fennema-Notestine, C., Franz, C.E., Thompson, … & Kremen, W.S., (2015). Hippocampal atrophy varies by neuropsychologically-defined MCI among men in their 50s. American Journal of Geriatric Psychiatry, 23(5), 456465.
Kane, M.J., Hambrick, D.Z., Tuholski, S.W., Wilhelm, O., Payne, T.W., & Engle, R.W. (2004). The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189217.
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test. Philadelphia : Lea and Febiger.
Lamar, M., Catani, M., Price, C.C., Heilman, K.M., & Libon, D.J. (2008). The impact of region specific leukoaraiosis on working memory deficits in dementia. Neuropsychologia, 46, 25972601.
Lamar, M., Price, C.C., Davis, K.L., Kaplan, E., & Libon, D.J. (2002). Capacity to maintain mental set in dementia. Neuropsychologia, 40(4), 435445.
Lamar, M., Price, C.C., Libon, D.J., Penney, D.L., Kaplan, E., Grossman, M., & Heilman, K.M. (2007). Alterations in working memory as a function of leukoaraiosis in dementia. Neuropsychologia, 45, 245254.
Lawton, M.P. & Brody, E.M. (1969). Assessment of older people: self-maintaining and instrumental activities of daily living. The Gerontologist, 9(3_Part_1), 179186.
Leszczyński, M., Fell, J., & Axmacher, N. (2015). Rhythmic working memory activation in the human hippocampus. Cell Reports, 13(6), 12721282.
Liang, Y., Pertzov, Y., Nicholas, J.M., Henley, S.M.D., Crutch, S., Woodward, F., Leung, K., Fox, N.C., & Husain, M. (2016). Visual short-term memory binding deficit in familial Alzheimer’s disease. Cortex, 78, 150164.
Markham, J.A. & Greenough, W.T. (2004). Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biology, 1(4), 351363.
Maxwell, S.E. (1992). Recent developments in MANOVA applications, In Thompson, B. (Ed.), Advances in social science methodology, Vol. 2, (pp. 137168). Stanford, CT: JAI Press.
McEvoy, L.K. & Brewer, J.B. (2012). Biomarkers for the clinical evaluation of the cognitively impaired elderly: amyloid is not enough. Imaging Medicine, 4(3), 343357.
Moses, S. N. & Ryan, J. D. (2006). A comparison and evaluation of the predictions of relational and conjunctive accounts of hippocampal function. Hippocampus, 16(1), 43e65. https://doi.org/10.1002/hipo.20131
Murray, M.E., Graff-Radford, N.R., Ross, O.A., Petersen, R.C., Duara, R., & Dickson, D.W. (2011). Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurology, 10, 785796.
O’Keefe, J., Burgess, N., Donnett, J.G., Jeffery, K.J., & Maguire, E.A. (1998). Place cells, navigational accuracy, and the human hippocampus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353(1373), 13331340.
Okonkwo, O.C., Oh, J.M., Koscik, R., Jonaitis, E., Cleary, C.A., Dowling, N.M., Bendlin, B.B., LaRue, A., Hermann, B.P., Barnhart, T.E., & Murali, D. (2014). Amyloid burden, neuronal function, and cognitive decline in middle-aged adults at risk for Alzheimer’s disease. Journal of the International Neuropsychological Society, 20(4), 422433.
Olson, I.R., Moore, K.S., Stark, M., & Chatterjee, A. (2006). Visual working memory is impaired when the medial temporal lobe is damaged. Journal of Cognitive Neuroscience, 18(7), 10871097.
Park, D.C., Lautenschlager, G., Hedden, T., Davidson, N.S., Smith, A.D., & Smith, P.K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299.
Piekema, C., Kessels, R.P., Mars, R.B., Petersson, K.M., & Fernández, G. (2006). The right hippocampus participates in short-term memory maintenance of object–location associations. Neuroimage, 33(1), 374382.
Reitan, R.M. & Wolfson, D. (1985). The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation, Vol. 4. Tucson, AZ: Reitan Neuropsychology.
Ruiz-Rizzo, A.L., Bublak, P., Redel, P., Grimmer, T., Müller, H.J., Sorg, C., & Finke, K. (2017). Simultaneous object perception deficits are related to reduced visual processing speed in amnestic mild cognitive impairment. Neurobiology of Aging, 55, 132142.
Scheff, S.W. & Price, D.A. (2003). Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging, 24, 10291046.
Sheikh, J.I. & Yesavage, J.A. (1986). Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. Clinical Gerontologist: The Journal of Aging and Mental Health, 5, 165172.
Smith, E.E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., & Koeppe, R.A. (2001). The neural basis of task-switching in working memory: effects of performance and aging. Proceedings of the National Academy of Sciences, 98(4), 20952100.
Smith, M. L. & Milner, B. (1981). The role of the right hippocampus in the recall of spatial location. Neuropsychologia, 19(6), 781793.
Smith, M. L. & Milner, B. (1989). Right hippocampal impairment in the recall of spatial location: encoding deficit or rapid forgetting? Neuropsychologia, 27(1), 7181.
Spellman, T., Rigotti, M., Ahmari, S.E., Fusi, S., Gogos, J.A., & Gordon, J.A. (2015). Hippocampal–prefrontal input supports spatial encoding in working memory. Nature, 522(7556), 309.
Spreen, O. & Strauss, E. (1990). Compendium of Neuropsychological Tests. New York : Oxford University Press.
Squire, L.R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys,and humans. Psychological Review, 99(2), 195231.
Tabachnick, B.G. & Fidell, L.S. (2013). Using multivariate statistics, 6th edn Boston, MA: Pearson.
Tanpitukpongse, T.P., Mazurowski, M.A., Ikhena, J., Petrella, J.R., & Alzheimer’s Disease Neuroimaging Initiative (2017). Predictive utility of marketed volumetric software tools in subjects at risk for Alzheimer’s: do regions outside the hippocampus matter? American Journal of Neuroradiology, 38, 546552.
Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., Hansen, L.A., & Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 30(4), 572580.
Troyer, A.K., Murphy, K.J., Anderson, N.D., Hayman-Abello, B.A., Craik, F.I., & Moscovitch, M. (2008). Item and associative memory in amnestic mild cognitive impairment: performance on standardized memory tests. Neuropsychology, 22(1), 10.
Voyer, D., Voyer, S.D., & Saint-Aubin, J. (2017). Sex differences in visual-spatial working memory: a meta-analysis. Psychonomic Bulletin & Review, 24(2), 307334.
Wechsler, D. (1997). WAIS-III: Administration and Scoring Manual: Wechsler Adult Intelligence Scale. San Antonio, TX: Psychological Corporation.
Yau, W.Y.W, Tudorascu, D.L., McDade, E.M., Ikonomovic, S., James, J.A., Minhas, D., Mowrey, W., Sheu, L.K., Snitz, B.E., Weissfeld, L., & Gianaros, P.J., (2015). Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer’s disease: a prospective cohort study. The Lancet Neurology, 14(8), 804813.
Yonelinas, A.P. (2013). The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behavioural Brain Research, 254, 3444.

Keywords

Visual versus Verbal Working Memory in Statistically Determined Patients with Mild Cognitive Impairment: On behalf of the Consortium for Clinical and Epidemiological Neuropsychological Data Analysis (CENDA)

  • Sheina Emrani (a1), Victor Wasserman (a1), Emily Matusz (a2), David Miller (a3), Melissa Lamar (a4), Catherine C. Price (a5), Terrie Beth Ginsberg (a2), Rhoda Au (a6) (a7), Rod Swenson (a8) and David J. Libon (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed