Skip to main content Accessibility help

Visual Object Discrimination Impairment as an Early Predictor of Mild Cognitive Impairment and Alzheimer’s Disease

  • Leslie S. Gaynor (a1), Rosie E. Curiel Cid (a2) (a3), Ailyn Penate (a4), Mónica Rosselli (a3) (a5), Sara N. Burke (a3) (a6), Meredith Wicklund (a3) (a7), David A. Loewenstein (a2) (a3) and Russell M. Bauer (a1) (a3)...


Objective: Detection of cognitive impairment suggestive of risk for Alzheimer’s disease (AD) progression is crucial to the prevention of incipient dementia. This study was performed to determine if performance on a novel object discrimination task improved identification of earlier deficits in older adults at risk for AD. Method: In total, 135 participants from the 1Florida Alzheimer’s Disease Research Center [cognitively normal (CN), Pre-mild cognitive impairment (PreMCI), amnestic mild cognitive impairment (aMCI), and dementia] completed a test of object discrimination and traditional memory measures in the context of a larger neuropsychological and clinical evaluation. Results: The Object Recognition and Discrimination Task (ORDT) revealed significant differences between the PreMCI, aMCI, and dementia groups versus CN individuals. Moreover, relative risk of being classified as PreMCI rather than CN increased as an inverse function of ORDT score. Discussion: Overall, the obtained results suggest that a novel object discrimination task improves the detection of very early AD-related cognitive impairment, increasing the window for therapeutic intervention. (JINS, 2019, 25, 688–698)


Corresponding author

Correspondence and reprint requests to: Leslie S. Gaynor, University of Florida, College of Public Health and Health Professions, P.O. Box 100165, Gainesville, FL 32610, USA, Phone (352) 273-6014, Fax (352) 273-6156. E-mail:


Hide All
Alegret, M., Boada-Rovira, M., Vinyes-Junque, G., Valero, S., Espinosa, A., Hernandez, I., & Tarraga, L. (2009). Detection of visuoperceptual deficits in preclinical and mild Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 31(7), 860867. doi: 10.1080/13803390802595568
Barense, M.D., Henson, R.N., Lee, A.C., & Graham, K.S. (2010). Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: effects of viewpoint. Hippocampus, 20(3), 389401. doi: 10.1002/hipo.20641
Barense, M.D., Ngo, J.K., Hung, L.H., & Peterson, M.A. (2012). Interactions of memory and perception in amnesia: the figure-ground perspective. Cerebral Cortex, 22(11), 26802691. doi: 10.1093/cercor/bhr347
Bartko, S.J., Winters, B.D., Cowell, R.A., Saksida, L.M., & Bussey, T.J. (2007). Perirhinal cortex resolves feature ambiguity in configural object recognition and perceptual oddity tasks. Learning & Memory, 14(12), 821832. doi: 10.1101/lm.749207
Benedict, R.H.B., Schretlen, D., Groninger, L., & Brandt, J. (2010). Hopkins verbal learning test—revised: normative data and analysis of inter-form and test-retest reliability. The Clinical Neuropsychologist, 12(1), 4355. doi: 10.1076/clin.
Bilgel, M., An, Y., Lang, A., Prince, J., Ferrucci, L., Jedynak, B., & Resnick, S.M. (2014). Trajectories of Alzheimer disease-related cognitive measures in a longitudinal sample. Alzheimer's & Dementia, 10(6), 735742.e734. doi: 10.1016/j.jalz.2014.04.520
Braak, H. & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239259.
Brooks, L.G. & Loewenstein, D.A. (2010). Assessing the progression of mild cognitive impairment to Alzheimer’s disease: current trends and future directions. Alzheimer's Research & Therapy, 2(5), 28. doi: 10.1186/alzrt52
Buckley, M.J., Booth, M.C., Rolls, E.T., & Gaffan, D. (2001). Selective perceptual impairments after perirhinal cortex ablation. The Journal of Neuroscience, 21(24), 98249836.
Buckley, M.J. & Gaffan, D. (1997). Impairment of visual object-discrimination learning after perirhinal cortex ablation. Behavioral Neuroscience, 111(3), 467475.
Burke, S.N. & Barnes, C.A. (2006). Neural plasticity in the ageing brain. Nature Reviews Neuroscience, 7(1), 3040. Retrieved from
Burke, S.N., Maurer, A.P., Nematollahi, S., Uprety, A., Wallace, J.L., & Barnes, C.A. (2014). Advanced age dissociates dual functions of the perirhinal cortex. Journal of Neuoscience, 34(2), 467480.
Burke, S.N., Wallace, J.L., Hartzell, A.L., Nematollahi, S., Plange, K., & Barnes, C.A. (2011). Age-associated deficits in pattern separation functions of the perirhinal cortex: a cross-species consensus. Behavioral Neuroscience, 125(6), 836847.
Bussey, T.J., Saksida, L.M., & Murray, E.A. (2003). Impairments in visual discrimination after perirhinal cortex lesions: testing “declarative” vs. “perceptual-mnemonic” views of perirhinal cortex function. European Journal of Neuroscience, 17(3), 649660.
Caselli, R.J., Locke, D.E., Dueck, A.C., Knopman, D.S., Woodruff, B.K., Hoffman-Snyder, C., & Reiman, E.M. (2014). The neuropsychology of normal aging and preclinical Alzheimer’s disease. Alzheimer’s & Dementia, 10(1), 8492. doi: 10.1016/j.jalz.2013.01.004
Cowell, R.A., Bussey, T.J., & Saksida, L.M. (2006). Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex. The Journal of Neuroscience, 26(47), 1218612197. doi: 10.1523/JNEUROSCI.2818-06.2006
Devlin, J.T. & Price, C.J. (2007). Perirhinal contributions to human visual perception. Current Biology, 17(17), 14841488. doi: 10.1016/j.cub.2007.07.066
Duara, R., Loewenstein, D.A., Greig, M.T., Potter, E., Barker, W., Raj, A., & Potter, H. (2011). Pre-MCI and MCI: neuropsychological, clinical, and imaging features and progression rates. The American Journal of Geriatric Psychiatry, 19(11), 951960. doi: 10.1097/JGP.0b013e3182107c69
Duara, R., Loewenstein, D.A., Shen, Q., Barker, W., Potter, E., Varon, D., & Buckley, C. (2013). Amyloid positron emission tomography with (18)F-flutemetamol and structural magnetic resonance imaging in the classification of mild cognitive impairment and Alzheimer’s disease. Alzheimer’s & Dementia, 9(3), 295301. doi: 10.1016/j.jalz.2012.01.006
Edmonds, E.C., Delano-Wood, L., Clark, L.R., Jak, A.J., Nation, D.A., McDonald, C.R., & Bondi, M.W. (2015). Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimer’s & Dementia, 11(4), 415424. doi: 10.1016/j.jalz.2014.03.005
Edmonds, E.C., Delano-Wood, L., Jak, A.J., Galasko, D.R., Salmon, D.P., & Bondi, M.W. (2016). “Missed” mild cognitive impairment: high false-negative error rate based on conventional diagnostic criteria. Journal of Alzheimer’s Disease, 52(2), 685691. doi: 10.3233/jad-150986
Elwood, R.W. (1991). The Wechsler Memory Scale-Revised: psychometric characteristics and clinical application. Neuropsychology Review, 2(2), 179201.
Fidalgo, C.O., Changoor, A.T., Page-Gould, E., Lee, A.C., & Barense, M.D. (2016). Early cognitive decline in older adults better predicts object than scene recognition performance. Hippocampus, 26(12), 15791592. doi: 10.1002/hipo.22658
Gaynor, L.S., Johnson, S.A., Mizell, J.M., Campos, K.T., Maurer, A.P., Bauer, R.M., & Burke, S.N. (2018). Impaired discrimination with intact crossmodal association in aged rats: a dissociation of perirhinal cortical-dependent behaviors. Behavioral Neuroscience, 132, 138151.
Harris, I.M., Egan, G.F., Sonkkila, C., Tochon-Danguy, H.J., Paxinos, G., & Watson, J.D.G. (2018). Selective right parietal lobe activation during mental rotationA parametric PET study. Brain , 123(1), 6573. doi: 10.1093/brain/123.1.65
Huber, C.M., Yee, C., May, T., Dhanala, A., & Mitchell, C.S. (2017). Cognitive decline in preclinical Alzheimer’s disease: amyloid-beta versus tauopathy. Journal of Alzheimer’s Disease, 61(1), 265281. doi: 10.3233/jad-170490
Johnson, S.A., Sacks, P.K., Turner, S.M., Gaynor, L.S., Ormerod, B.K., Maurer, A.P., & Burke, S.N. (2016). Discrimination performance in aging is vulnerable to interference and dissociable from spatial memory. Learning & Memory, 23, 339348.
Johnson, S.A., Turner, S.M., Santacroce, L.A., Carty, K.N., Shafiq, L., Bizon, J.L., & Burke, S.N. (2017). Rodent age-related impairments in discriminating perceptually similar objects parallel those observed in humans. Hippocampus, 27(7), 759776. doi: 10.1002/hipo.22729
Khan, U.A., Liu, L., Provenzano, F.A., Berman, D.E., Profaci, C.P., Sloan, R., & Small, S.A. (2014). Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nature Neuroscience, 17(2), 304311. doi: 10.1038/nn.3606
Kivisaari, S.L., Tyler, L.K., Monsch, A.U., & Taylor, K.I. (2012). Medial perirhinal cortex disambiguates confusable objects. Brain, 135(Pt 12), 37573769. doi: 10.1093/brain/aws277
Krueger, K.R., Lam, C.S., & Wilson, R.S. (2006). The word accentuation test—Chicago. Journal of Clinical and Experimental Neuropsychology, 28(7), 12011207. doi: 10.1080/13803390500346603
Krumm, S., Kivisaari, S.L., Probst, A., Monsch, A.U., Reinhardt, J., Ulmer, S., & Taylor, K.I. (2016). Cortical thinning of parahippocampal subregions in very early Alzheimer’s disease. Neurobiology of Aging, 38, 188196. doi: 10.1016/j.neurobiolaging.2015.11.001
Kurylo, D.D., Corkin, S., Rizzo Iii, J.F., & Growdon, J.H. (1996). Greater relative impairment of object recognition than of visuospatial abilities in Alzheimer’s disease. Neuropsychology, 10(1), 7481. doi: 10.1037/0894-4105.10.1.74
Lee, A.C., Barense, M.D., & Graham, K.S. (2005). The contribution of the human medial temporal lobe to perception: bridging the gap between animal and human studies. The Quarterly Journal of Experimental Psychology. B, Comparative and Physiological Psychology, 58(3–4), 300325. doi: 10.1080/02724990444000168
Lezak, M.D., Howieson, D.B., Loring, D.W., & Fischer, J.S. (2004). Neuropsychological assessment. New York, NY, USA: Oxford University Press.
Loewenstein, D.A., Curiel, R.E., DeKosky, S., Bauer, R.M., Rosselli, M., Guinjoan, S.M., & Duara, R. (2018). Utilizing semantic intrusions to identify amyloid positivity in mild cognitive impairment. Neurology, 91(10), e976e984. doi: 10.1212/wnl.0000000000006128
Loewenstein, D.A., Curiel, R.E., Greig, M.T., Bauer, R.M., Rosado, M., Bowers, D., & Duara, R. (2016). A novel cognitive stress test for the detection of preclinical Alzheimer disease: discriminative properties and relation to amyloid load. The American Journal of Geriatric Psychiatry, 24(10), 804813. doi: 10.1016/j.jagp.2016.02.056
Loewenstein, D.A., Greig, M.T., Schinka, J.A., Barker, W., Shen, Q., Potter, E., & Duara, R. (2012). An investigation of PreMCI: subtypes and longitudinal outcomes. Alzheimer’s & Dementia, 8(3), 172179. doi: 10.1016/j.jalz.2011.03.002
Loonstra, A.S., Tarlow, A.R., & Sellers, A.H. (2001). COWAT metanorms across age, education, and gender. Applied Neuropsychology, 8(3), 161166. doi: 10.1207/s15324826an0803_5
Mason, E.J., Hussey, E.P., Molitor, R.J., Ko, P.C., Donahue, M.J., & Ally, B.A. (2017). Family history of Alzheimer’s disease is associated with impaired perceptual discrimination of novel objects. Journal of Alzheimer’s Disease, 57(3), 735745. doi: 10.3233/jad-160772
Maurer, A.P., Burke, S.N., Diba, K., & Barnes, C.A. (2017). Attenuated activity across multiple cell types and reduced monosynaptic connectivity in the aged perirhinal cortex. The Journal of Neuroscience, 37(37), 89658974. doi: 10.1523/jneurosci.0531-17.2017
Moyer, J.R. Jr., Furtak, S.C., McGann, J.P., & Brown, T.H. (2011). Aging-related changes in calcium-binding proteins in rat perirhinal cortex. Neurobiology of Aging, 32(9), 16931706. doi: 10.1016/j.neurobiolaging.2009.10.001
Murray, E.A. & Bussey, T.J. (1999). Perceptual-mnemonic functions of the perirhinal cortex. Trends in Cognitive Sciences, 3(4), 142151.
Newsome, R.N., Duarte, A., & Barense, M.D. (2012). Reducing perceptual interference improves visual discrimination in mild cognitive impairment: implications for a model of perirhinal cortex function. Hippocampus, 22(10), 19901999. doi: 10.1002/hipo.22071
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56(3), 303308.
Qiu, W.Y., Yang, Q., Zhang, W., Wang, N., Zhang, D., Huang, Y., & Ma, C. (2017). The correlations between postmortem brain pathologies and cognitive dysfunction in aging and Alzheimer’s disease. Current Alzheimer Research, 15(5), 462473. doi: 10.2174/1567205014666171106150915
Rockwood, K., Strang, D., MacKnight, C., Downer, R., & Morris, J.C. (2000). Interrater reliability of the Clinical Dementia Rating in a multicenter trial. Journal of the American Geriatrics Society, 48(5), 558559.
Ryan, L., Cardoza, J.A., Barense, M.D., Kawa, K.H., Wallentin-Flores, J., Arnold, W.T., & Alexander, G.E. (2012). Age-related impairment in a complex object discrimination task that engages perirhinal cortex. Hippocampus, 22(10), 19781989. doi: 10.1002/hipo.22069
Schneider, L.S., Mangialasche, F., Andreasen, N., Feldman, H., Giacobini, E., Jones, R., & Kivipelto, M. (2014). Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. Journal of Internal Medicine, 275(3), 251283. doi: 10.1111/joim.12191
Snow, W.G., Tierney, M.C., Zorzitto, M.L., Fisher, R.H., & Reid, D.W. (1989). WAIS-R test-retest reliability in a normal elderly sample. Journal of Clinical and Experimental Neuropsychology, 11(4), 423428. doi: 10.1080/01688638908400903
Snyder, P.J., Kahle-Wrobleski, K., Brannan, S., Miller, D.S., Schindler, R.J., DeSanti, S., & Carrillo, M.C. (2014). Assessing cognition and function in Alzheimer’s disease clinical trials: do we have the right tools?: Alzheimer’s & Dementia, 10(6), 853860. doi: 10.1016/j.jalz.2014.07.158
Sone, D., Imabayashi, E., Maikusa, N., Okamura, N., Furumoto, S., Kudo, Y., & Matsuda, H. (2017). Regional tau deposition and subregion atrophy of medial temporal structures in early Alzheimer’s disease: a combined positron emission tomography/magnetic resonance imaging study. Alzheimer’s & Dementia (Amst), 9, 3540. doi: 10.1016/j.dadm.2017.07.001
Tombaugh, T.N. (2004). Trail Making Test A and B: normative data stratified by age and education. Archives of Clinical Neuropsychology, 19(2), 203214. doi: 10.1016/s0887-6177(03)00039-8
Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N.R., Chui, H., & Morris, J.C. (2009). The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): the neuropsychological test battery. Alzheimer Disease and Associated Disorders, 23(2), 91101. doi: 10.1097/WAD.0b013e318191c7dd
Weissberger, G.H., Strong, J.V., Stefanidis, K.B., Summers, M.J., Bondi, M.W., & Stricker, N.H. (2017). Diagnostic accuracy of memory measures in Alzheimer’s dementia and mild cognitive impairment: a systematic review and meta-analysis. Neuropsychology Review, 27(4), 354388. doi: 10.1007/s11065-017-9360-6
Wilkinson, G.S. & Robertson, G. (2006). Wide Range Achievement Test (4th ed.). Lutz, FL: Psychological Assessment Resources.
Woodcock, R.W., Muñoz-Sandoval, A.F., Ruef, M.L., & Alvarado, C.G. (2005). Woodcock language proficiency battery—Revised. Itasca, IL: Riverside.
Yeung, L.K., Ryan, J.D., Cowell, R.A., & Barense, M.D. (2013). Recognition memory impairments caused by false recognition of novel objects. Journal of Experimental Psychology: General, 142(4), 13841397. doi: 10.1037/a0034021



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed