Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-17T19:39:29.781Z Has data issue: false hasContentIssue false

Physical Activity Affects Brain Integrity in HIV+ Individuals

Published online by Cambridge University Press:  19 November 2015

Mario Ortega
Affiliation:
Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
Laurie M. Baker
Affiliation:
Department of Psychology, University of Missouri, St. Louis, Missouri
Florin Vaida
Affiliation:
Department of Medicine, University of California, San Diego, California
Robert Paul
Affiliation:
Department of Psychology, University of Missouri, St. Louis, Missouri
Brian Basco
Affiliation:
Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
Beau M. Ances*
Affiliation:
Department of Neurology, Washington University in St. Louis, St. Louis, Missouri Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
*
Correspondence and reprint requests to: Beau Ances, Box 8111, 660 South Euclid Avenue, Saint Louis, MO 63110. E-mail: ancesb@neuro.wustl.edu

Abstract

Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV-) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV+) individuals. Seventy HIV+ individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV+ individuals were classified as physically active (any energy expended above resting expenditure, n=22) or sedentary (n=48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV+ individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p=.034). Physically active HIV+ individuals performed better on executive (p=.040, unadjusted; p=.043, adjusted) but not motor function (p=.17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r=0.45, p=0.035) but not motor (r=0.21; p=.35) performance. In adjusted analyses the physically active HIV+ individuals had larger putamen volumes (p=.019). A positive relationship exists between PA and brain integrity in HIV+ individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV+ individuals. (JINS, 2015, 21, 880–889)

Type
Research Article
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., Strath, S.J., &Leon, A.S. (2000). Compendium of Physical Activities: An update of activity codes and MET intensities. Medicine and Science in Sports and Exercise, 32(Suppl.), S498S504.CrossRefGoogle ScholarPubMed
Ances, B.M., Ortega, M., Vaida, F., Heaps, J., & Paul, R. (2012). Independent effects of HIV, aging, and HAART on brain volumetric measures. Journal of Acquired Immune Deficiency Syndrome, 59(5), 469477. doi:10.1097/QAI.0b013e318249db17 CrossRefGoogle ScholarPubMed
Au, R., Seshadri, S., Wolf, P.A., Elias, M., Elias, P., Sullivan, L., & D’Agostino, R.B. (2004). New norms for a new generation: Cognitive performance in the framingham offspring cohort. Experimental Aging Research, 30(4), 333358. doi:10.1080/03610730490484380 CrossRefGoogle ScholarPubMed
Baker, L.M., Paul, R.H., Heaps, J.M., Westerhaus, E., Chang, J.Y., Williams, S., &Ances, B.M. (2014). Impact of human immunodeficiency virus on neurocognition and risky behaviors in young adults. Journal of Neurovirology, 20(5), 466473. doi:10.1007/s13365-014-0264-4 CrossRefGoogle ScholarPubMed
Barnes, D.E., Yaffe, K., Satariano, W.A., & Tager, I.B. (2003). A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. Journal of the American Geriatric Society, 51(4), 459465.CrossRefGoogle ScholarPubMed
Becker, J.T., Sanders, J., Madsen, S.K., Ragin, A., Kingsley, L., Maruca, V., & Multicenter, A.C.S. (2011). Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imaging and Behavior, 5(2), 7785. doi:10.1007/s11682-011-9113-8 CrossRefGoogle ScholarPubMed
Benedict, R.H., Schretlen, D., Groninger, L., & Brandt, J. (1998). Hopkins Verbal Learning Test - Revised: Normative data and analysis of inter-form and test-retest reliability. The Clinical Neuropsychologist, 12(1), 4355.CrossRefGoogle Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289300.CrossRefGoogle Scholar
Berchicci, M., Lucci, G., Perri, R.L., Spinelli, D., & Di Russo, F. (2014). Benefits of physical exercise on basic visuo-motor functions across age. Frontiers in Aging Neuroscience, 6, 48.CrossRefGoogle ScholarPubMed
Bonelli, R.M., & Cummings, J.L. (2007). Frontal-subcortical circuitry and behavior. Dialogues in Clinical Neuroscience, 9(2), 141151.CrossRefGoogle ScholarPubMed
Bowles, H.R., FitzGerald, S.J., Morrow, J.R. Jr., Jackson, A.W., & Blair, S.N. (2004). Construct validity of self-reported historical physical activity. American Journal of Epidemiology, 160(3), 279286. doi:10.1093/aje/kwh209 CrossRefGoogle ScholarPubMed
Brandt, J., & Benedict, R.H. (2001). Hopkins Verbal Learning test - Revised professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Bugg, J.M., & Head, D. (2011). Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiology of Aging, 32(3), 506514. doi:10.1016/j.neurobiolaging.2009.03.008 CrossRefGoogle ScholarPubMed
Cade, W.T., Overton, E.T., Mondy, K., de las Fuentes, L., Davila-Roman, V.G., Waggoner, A.D., &Yarasheski, K.E. (2013). Relationships among HIV infection, metabolic risk factors, and left ventricular structure and function. AIDS Research and Human Retroviruses, 29(8), 11511160. doi:10.1089/AID.2012.0254 CrossRefGoogle ScholarPubMed
Cade, W.T., Reeds, D.N., Lassa-Claxton, S., Davila-Roman, V.G., Waggoner, A.D., Powderly, W.G., &Yarasheski, K.E. (2008). Post-exercise heart rate recovery in HIV-positive individuals on highly active antiretroviral therapy. Early indicator of cardiovascular disease? HIV Medicine, 9(2), 96100. doi:10.1111/j.1468-1293.2007.00524.x CrossRefGoogle ScholarPubMed
Chan, J.S., Yan, J.H., & Payne, V.G. (2013). The impact of obesity and exercise on cognitive aging. Frontiers in Aging Neuroscience, 5, 97. doi:10.3389/fnagi.2013.00097 CrossRefGoogle ScholarPubMed
Chapman, S.B., Aslan, S., Spence, J.S., Defina, L.F., Keebler, M.W., Didehbani, N., &Lu, H. (2013). Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Frontiers in Aging Neuroscience, 5, 75. doi:10.3389/fnagi.2013.00075 CrossRefGoogle ScholarPubMed
Cruickshank, T.M., Thompson, J.A., Dominguez, D.J., Reyes, A.P., Bynevelt, M., Georgiou-Karistianis, N., & Ziman, M.R. (2015). The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington’s disease: An exploratory study. Brain and Behavior, 5(2), e00312. doi:10.1002/brb3.312 CrossRefGoogle ScholarPubMed
Dale, A.M., Fischl, B., & Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179194. doi:10.1006/nimg.1998.0395 CrossRefGoogle ScholarPubMed
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., &Killiany, R.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980. doi:10.1016/j.neuroimage.2006.01.021 CrossRefGoogle ScholarPubMed
Dregan, A., & Gulliford, M.C. (2013). Leisure-time physical activity over the life course and cognitive functioning in late mid-adult years: A cohort-based investigation. Psychological Medicine, 43(11), 24472458. doi:10.1017/S0033291713000305 CrossRefGoogle Scholar
Duff, K., Schoenberg, M.R., Scott, J.G., & Adams, R.L. (2005). The relationship between executive functioning and verbal and visual learning and memory. Archives of Clinical Neuropsychology, 20(1), 111122. doi:10.1016/j.acn.2004.03.003 CrossRefGoogle ScholarPubMed
Dufour, C.A., Marquine, M.J., Fazeli, P.L., Henry, B.L., Ellis, R.J., Grant, I., &Group, H. (2013). Physical exercise is associated with less neurocognitive impairment among HIV-infected adults. Journal of Neurovirology, 19(5), 410417. doi:10.1007/s13365-013-0184-8 CrossRefGoogle ScholarPubMed
Erickson, K.I., Leckie, R.L., & Weinstein, A.M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of Aging, 35(Suppl. 2), S20S28. doi:10.1016/j.neurobiolaging.2014.03.034 CrossRefGoogle ScholarPubMed
Fazeli, P.L., Woods, S.P., Heaton, R.K., Umlauf, A., Gouaux, B., Rosario, D., & Group, H. (2014). An active lifestyle is associated with better neurocognitive functioning in adults living with HIV infection. Journal of Neurovirology, 20(3), 233242. doi:10.1007/s13365-014-0240-z CrossRefGoogle ScholarPubMed
Fischl, B., Sereno, M.I., & Dale, A.M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195207. doi:10.1006/nimg.1998.0396 CrossRefGoogle Scholar
Free, S.L., Bergin, P.S., Fish, D.R., Cook, M.J., Shorvon, S.D., & Stevens, J.M. (1995). Methods for normalization of hippocampal volumes measured with MR. AJNR: American Journal of Neuroradiology, 16(4), 637643.Google ScholarPubMed
Friis-Moller, N., Thiebaut, R., Reiss, P., Weber, R., Monforte, A.D., De Wit, S., … DAD Study Group. (2010). Predicting the risk of cardiovascular disease in HIV-infected patients: The data collection on adverse effects of anti-HIV drugs study. European Journal of Cardiovascular Prevention and Rehabilitation, 17(5), 491501. doi:10.1097/HJR.0b013e328336a150 CrossRefGoogle Scholar
Gladsjo, J.A., Schuman, C.C., Evans, J.D., Peavy, G.M., Miller, S.W., & Heaton, R.K. (1999). Norms for letter and category fluency: Demographic corrections for age, education, and ethnicity. Assessment, 6(2), 147178.CrossRefGoogle ScholarPubMed
Gomes-Neto, M., Conceicao, C.S., Oliveira Carvalho, V., & Brites, C. (2013). A systematic review of the effects of different types of therapeutic exercise on physiologic and functional measurements in patients with HIV/AIDS. Clinics (Sao Paulo), 68(8), 11571167. doi:10.6061/clinics/2013(08)16 CrossRefGoogle ScholarPubMed
Head, D., Singh, T., & Bugg, J.M. (2012). The moderating role of exercise on stress-related effects on the hippocampus and memory in later adulthood. Neuropsychology, 26(2), 133.CrossRefGoogle ScholarPubMed
Heaton, R.K., Clifford, D.B., Franklin, D.R. Jr., Woods, S.P., Ake, C., Vaida, F., … Charter Group. (2010). HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology, 75(23), 20872096. doi:10.1212/WNL.0b013e318200d727 CrossRefGoogle ScholarPubMed
Honea, R.A., Thomas, G.P., Harsha, A., Anderson, H.S., Donnelly, J.E., Brooks, W.M., & Burns, J.M. (2009). Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. Alzheimer Disease and Associated Disorders, 23(3), 188197. doi:10.1097/WAD.0b013e31819cb8a2 CrossRefGoogle ScholarPubMed
Law, L.L., Barnett, F., Yau, M.K., & Gray, M.A. (2014). Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: A systematic review. Ageing Reseach Reviews, 15, 6175. doi:10.1016/j.arr.2014.02.008 CrossRefGoogle ScholarPubMed
Lee, M.H., Wang, T., Jang, M.H., Steiner, J., Haughey, N., Ming, G.L., &Venkatesan, A. (2011). Rescue of adult hippocampal neurogenesis in a mouse model of HIV neurologic disease. Neurobiology of Disease, 41(3), 678687. doi:10.1016/j.nbd.2010.12.002 CrossRefGoogle Scholar
Liang, K.Y., Mintun, M.A., Fagan, A.M., Goate, A.M., Bugg, J.M., Holtzman, D.M., & Head, D. (2010). Exercise and Alzheimer’s disease biomarkers in cognitively normal older adults. Annals of Neurology, 68(3), 311318. doi:10.1002/ana.22096 CrossRefGoogle ScholarPubMed
Mapstone, M., Hilton, T.N., Yang, H., Guido, J.J., Luque, A.E., Hall, W.J., &Shah, K. (2013). Poor aerobic fitness may contribute to cognitive decline in HIV-infected older adults. Aging and Disease, 4(6), 311319. doi:10.14336/AD.2013.0400311 CrossRefGoogle ScholarPubMed
Matthews, C., & Klove, N. (1964). Instruction manual for the adult neuropsychology test battery. Madison, WI: University of Wisconsin Medical School.Google Scholar
McGuire, J.L., Barrett, J.S., Vezina, H.E., Spitsin, S., & Douglas, S.D. (2014). Adjuvant therapies for HIV-associated neurocognitive disorders. Annals of Clinical and Translational Neurology, 1(11), 938952. doi:10.1002/acn3.131 CrossRefGoogle ScholarPubMed
Metzger, D.S., Nalvaline, H.A., & Woody, G.E. (2001). Assessment of substance abuse: HIV risk assessment battery. Encyclopedia of drugs, alcohol and addictive behavior. Farmington Mills, MI: Macmillan Reference USA.Google Scholar
Nogueira Pinto, A. (2005). AIDS/HIV infection and cerebrovascular disease. Seminars in Cerebrovascular Diseases and Stroke, 5, 4046.CrossRefGoogle Scholar
Norman, M.A., Moore, D.J., Taylor, M., Franklin, D. Jr., Cysique, L., Ake, C., … HNRC Group. (2011). Demographically corrected norms for African Americans and Caucasians on the Hopkins Verbal Learning Test-Revised, Brief Visuospatial Memory Test-Revised, Stroop Color and Word Test, and Wisconsin Card Sorting Test 64-Card Version. Journal of Clinical and Expimental Neuropsychology, 33(7), 793804. doi:10.1080/13803395.2011.559157 CrossRefGoogle ScholarPubMed
Okonkwo, O.C., Schultz, S.A., Oh, J.M., Larson, J., Edwards, D., Cook, D., &Sager, M.A. (2014). Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology, 83(19), 17531760. doi:10.1212/WNL.0000000000000964 CrossRefGoogle ScholarPubMed
Overton, E.T., Kauwe, J.S., Paul, R., Tashima, K., Tate, D.F., Patel, P., & Clifford, D.B. (2011). Performances on the CogState and standard neuropsychological batteries among HIV patients without dementia. AIDS and Behavior, 15(8), 19021909. doi:10.1007/s10461-011-0033-9 CrossRefGoogle ScholarPubMed
Park, J.H., Miyashita, M., Takahashi, M., Kawanishi, N., Hayashida, H., Kim, H.S., &Nakamura, Y. (2014). Low-volume walking program improves cardiovascular-related health in older adults. Journal of Sports Science & Medicine, 13(3), 624631.Google ScholarPubMed
Parsons, T.D., Rogers, S., Hall, C., & Robertson, K. (2007). Motor based assessment of neurocognitive functioning in resource-limited international settings. Journal of Clinical and Expimental Neuropsychology, 29(1), 5966. doi:10.1080/13803390500488538 CrossRefGoogle ScholarPubMed
Paul, R.H., Ernst, T., Brickman, A.M., Yiannoutsos, C.T., Tate, D.F., Cohen, R.A., … H.I.V. MRS Consortium. (2008). Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. Journal of the International Neuropsychological Society, 14(5), 725733. doi:10.1017/S1355617708080910 CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Rosenbloom, M.J., Sassoon, S.A., Kemper, C.A., Deresinski, S., Rohlfing, T., & Sullivan, E.V. (2012). Regional brain structural dysmorphology in human immunodeficiency virus infection: Effects of acquired immune deficiency syndrome, alcoholism, and age. Biological Psychiatry, 72(5), 361370. doi:10.1016/j.biopsych.2012.02.018 CrossRefGoogle ScholarPubMed
Phillips, E.J., Ottaway, C.A., Freedman, J., Kardish, M., Li, J., Singer, W., &Fong, I.W. (1997). The effect of exercise on lymphocyte redistribution and leucocyte function in asymptomatic HIV-infected subjects. Brain, Behavior, and Immunity, 11(3), 217227. doi:10.1006/brbi.1997.0494 CrossRefGoogle ScholarPubMed
Piatt, A.L., Fields, J.A., Paolo, A.M., & Troster, A.I. (1999). Action (verb naming) fluency as an executive function measure: Convergent and divergent evidence of validity. Neuropsychologica, 37(13), 14991503.CrossRefGoogle ScholarPubMed
Pizzie, R., Hindman, H., Roe, C.M., Head, D., Grant, E., Morris, J.C., &Hassenstab, J.J. (2014). Physical activity and cognitive trajectories in cognitively normal adults: The adult children study. Alzheimer Disease and Associated Disorders, 28(1), 5057. doi:10.1097/WAD.0b013e31829628d4 CrossRefGoogle ScholarPubMed
Reitan, R.M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276.CrossRefGoogle Scholar
Rojas Vega, S., Knicker, A., Hollmann, W., Bloch, W., & Struder, H.K. (2010). Effect of resistance exercise on serum levels of growth factors in humans. Hormone and Metabolic Research, 42(13), 982986. doi:10.1055/s-0030-1267950 CrossRefGoogle ScholarPubMed
Shapiro, S.S., & Wilk, M.B. (1965). An analysis of variance test for normality. Biometrika, 52(3-4), 591611.CrossRefGoogle Scholar
Simioni, S., Cavassini, M., Annoni, J.M., Rimbault Abraham, A., Bourquin, I., Schiffer, V., & Du Pasquier, R.A. (2010). Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS, 24(9), 12431250. doi:10.1097/QAD.0b013e3283354a7b CrossRefGoogle ScholarPubMed
Spreen, O., & Benton, A.L. (1963). Simulation of mental deficiency on a visual memory test. American Journal of Mental Deficiency, 67, 909913.Google ScholarPubMed
Thames, A.D., Foley, J.M., Wright, M.J., Panos, S.E., Ettenhofer, M., Ramezani, A., &Hinkin, C.H. (2012). Basal ganglia structures differentially contribute to verbal fluency: Evidence from Human Immunodeficiency Virus (HIV)-infected adults. Neuropsychologia, 50(3), 390395. doi:10.1016/j.neuropsychologia.2011.12.010 CrossRefGoogle ScholarPubMed
Thompson, P.M., Dutton, R.A., Hayashi, K.M., Toga, A.W., Lopez, O.L., Aizenstein, H.J., & Becker, J.T. (2005). Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proceedings of the Nationall Academy of Sciences of the United States of America, 102(43), 1564715652. doi:10.1073/pnas.0502548102 Google ScholarPubMed
Tozzi, V., Balestra, P., Salvatori, M.F., Vlassi, C., Liuzzi, G., Giancola, M.L., &Antinori, A. (2009). Changes in cognition during antiretroviral therapy: Comparison of 2 different ranking systems to measure antiretroviral drug efficacy on HIV-associated neurocognitive disorders. Journal of Acquired Immune Deficiency Syndromes, 52(1), 5663.CrossRefGoogle ScholarPubMed
Tziortzi, A.C., Haber, S.N., Searle, G.E., Tsoumpas, C., Long, C.J., Shotbolt, P., &Gunn, R.N. (2014). Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cerebral Cortex, 24(5), 11651177. doi:10.1093/cercor/bhs397 CrossRefGoogle ScholarPubMed
Valcour, V.G. (2013). HIV, aging, and cognition: Emerging issues. Topics in Antiviral Medicine, 21(3), 119123.Google ScholarPubMed
Vanderploeg, R.D., Schinka, J.A., & Retzlaff, P. (1994). Relationships between measures of auditory verbal learning and executive functioning. Journal of Clinical and Experimental Neuropsychology, 16(2), 243252. doi:10.1080/01688639408402635 CrossRefGoogle ScholarPubMed
Vittinghoff, E., Glidden, D.V., Shiboski, S.C., & McCulloch, C.E. (2012). Regression methods in biostatistics. New York: Springer-Verlag.CrossRefGoogle Scholar
Voss, M.W., Prakash, R.S., Erickson, K.I., Basak, C., Chaddock, L., Kim, J.S., & Kramer, A.F. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2, 32. doi:10.3389/fnagi.2010.00032 Google Scholar
Walhovd, K.B., Tamnes, C.K., Bjornerud, A., Due-Tonnessen, P., Holland, D., Dale, A.M., & Fjell, A.M. (2015). Maturation of cortico-subcortical structural networks-segregation and overlap of medial temporal and fronto-striatal systems in development. Cerebral Cortex, 25(7), 18351841. doi:10.1093/cercor/bht424 CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). Wechsler Adult Intelligence Scale® - Third Edition (WAIS®-III). San Antonio, TX: Harcourt Assessment.Google Scholar
Whiteman, A.S., Young, D.E., He, X., Chen, T.C., Wagenaar, R.C., Stern, C.E., & Schon, K. (2014). Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behavioral Brain Research, 259, 302312. doi:10.1016/j.bbr.2013.11.023 CrossRefGoogle ScholarPubMed
Woods, S.P., Scott, J.C., Dawson, M.S., Morgan, E.E., Carey, C.L., Heaton, R.K., … H.I.V. Neurobehavioral Research Center (HNRC) Group. (2005). Construct validity of Hopkins Verbal Learning Test-Revised component process measures in an HIV-1 sample. Archives of Clinical Neuropsychology, 20(8), 10611071. doi:10.1016/j.acn.2005.06.007 CrossRefGoogle Scholar
Yarasheski, K.E., Laciny, E., Overton, E.T., Reeds, D.N., Harrod, M., Baldwin, S., &Davila-Roman, V.G. (2012). 18FDG PET-CT imaging detects arterial inflammation and early atherosclerosis in HIV-infected adults with cardiovascular disease risk factors. Journal of Inflammation, 9(1), 26. doi:10.1186/1476-9255-9-26 CrossRefGoogle ScholarPubMed
Yarasheski, K.E., Scherzer, R., Kotler, D.P., Dobs, A.S., Tien, P.C., Lewis, C.E., … Metabolic Change in, H. I. V. I. (2011). Age-related skeletal muscle decline is similar in HIV-infected and uninfected individuals. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 66(3), 332340. doi:10.1093/gerona/glq228 CrossRefGoogle ScholarPubMed