Skip to main content Accessibility help

Patterns of Cortical and Subcortical Amyloid Burden across Stages of Preclinical Alzheimer’s Disease

  • Emily C. Edmonds (a1), Katherine J. Bangen (a1) (a2), Lisa Delano-Wood (a1) (a2), Daniel A. Nation (a3), Ansgar J. Furst (a4) (a5), David P. Salmon (a6), Mark W. Bondi (a1) (a2) and for the Alzheimer’s Disease Neuroimaging Initiative...


Objectives: We examined florbetapir positron emission tomography (PET) amyloid scans across stages of preclinical Alzheimer’s disease (AD) in cortical, allocortical, and subcortical regions. Stages were characterized using empirically defined methods. Methods: A total of 312 cognitively normal Alzheimer’s Disease Neuroimaging Initiative participants completed a neuropsychological assessment and florbetapir PET scan. Participants were classified into stages of preclinical AD using (1) a novel approach based on the number of abnormal biomarkers/cognitive markers each individual possessed, and (2) National Institute on Aging and the Alzheimer’s Association (NIA-AA) criteria. Preclinical AD groups were compared to one another and to a mild cognitive impairment (MCI) sample on florbetapir standardized uptake value ratios (SUVRs) in cortical and allocortical/subcortical regions of interest (ROIs). Results: Amyloid deposition increased across stages of preclinical AD in all cortical ROIs, with SUVRs in the later stages reaching levels seen in MCI. Several subcortical areas showed a pattern of results similar to the cortical regions; however, SUVRs in the hippocampus, pallidum, and thalamus largely did not differ across stages of preclinical AD. Conclusions: Substantial amyloid accumulation in cortical areas has already occurred before one meets criteria for a clinical diagnosis. Potential explanations for the unexpected pattern of results in some allocortical/subcortical ROIs include lack of correspondence between (1) cerebrospinal fluid and florbetapir PET measures of amyloid, or between (2) subcortical florbetapir PET SUVRs and underlying neuropathology. Findings support the utility of our novel method for staging preclinical AD. By combining imaging biomarkers with detailed cognitive assessment to better characterize preclinical AD, we can advance our understanding of who is at risk for future progression. (JINS, 2016, 22, 978–990)


Corresponding author

Correspondence and reprint requests to: Emily C. Edmonds, 3350 La Jolla Village Drive #151B, San Diego, CA 92161. E-mail:


Hide All

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database ( As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:



Hide All
Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T., & Hyman, B.T. (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 42, 631639.
Balasubramanian, A.B., Kawas, C.H., Peltz, C.B., Brookmeyer, R., & Corrada, M.M. (2012). Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology, 79(9), 915921. doi: 10.1212/WNL.0b013e318266fc77
Bangen, K.J., Clark, A.L., Werhane, M., Edmonds, E., Nation, D.A., Evangelista, N., & Delano-Wood, L. (2016). Cortical amyloid burden in empirically-derived MCI subtypes. Journal of Alzheimer’s Disease, 52, 849861.
Bateman, R.J., Xiong, C., Benzinger, T.L., Fagan, A.M., Goate, A., Fox, N.C., & Morris, J.C. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine, 367(9), 795804. doi: 10.1056/NEJMoa1202753
Beach, T.G., Thal, D.R., Zanette, M., Smith, A., & Buckley, C. (2016). Detection of striatal amyloid plaques with [18F]flutemetamol: Validation with postmortem histopathology. Journal of Alzheimer’s Disease, 52, 863873.
Bennett, D.A., Schneider, J.A., Bienias, J.L., Evans, D.A., & Wilson, R.S. (2005). Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology, 64(5), 834841. doi: 10.1212/01.wnl.0000152982.47274.9e
Bondi, M.W., Edmonds, E.C., Jak, A.J., Clark, L.R., Delano-Wood, L., McDonald, C.R., & Salmon, D.P. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and prediction of progression. Journal of Alzheimer’s Disease, 42(1), 275289. doi: 10.3233/JAD-140276
Braak, H., & Braak, E. (1990). Alzheimer’s disease: Striatal amyloid deposits and neurofibrillary changes. Journal of Neuropathology and Experimental Neurology, 49(3), 215224.
Braak, H., & Del Tredici, K. (2015). The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain, 138(10), 28142833. doi: 10.1093/brain/awv236
Braak, H., Zetterberg, H., Del Tredici, K., & Blennow, K. (2013). Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathologica, 126(5), 631641. doi: 10.1007/s00401-013-1139-0
Brilliant, M.J., Elble, R.J., Ghobrial, M., & Struble, R.G. (1997). The distribution of amyloid beta protein deposition in the corpus striatum of patients with Alzheimer’s disease. Neuropathology and Applied Neurobiology, 23(4), 322325.
Chételat, G., La Joie, R., Villain, N., Perrotin, A., da La Sayette, V., Eustache, F., & Vandenberghe, R. (2013). Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. Neuroimage: Clinical, 2, 356365. doi: 10.1016/j.nicl.2013.02.006
Cho, H., Seo, S.W., Kim, J.H., Suh, M.K., Lee, J.H., Choe, Y.S., & Na, D.L. (2013). Amyloid deposition in early onset versus late onset Alzheimer’s disease. Journal of Alzheimer’s Disease, 35(4), 813821. doi: 10.3233/JAD-121927
Clark, C.M., Pontecorvo, M.J., Beach, T.G., Bedell, B.J., Coleman, R.E., Doraiswamy, P.M., & Skovronsky, D.M. (2012). Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: A prospective cohort study. Lancet Neurology, 11(8), 669678. doi: 10.1016/s1474-4422(12)70142-4
Clark, L.R., Delano-Wood, L., Libon, D.J., McDonald, C.R., Nation, D.A., Bangen, K.J., & Bondi, M.W. (2013). Are empirically derived subtypes of mild cognitive impairment consistent with conventional subtypes? Journal of the International Neuropsychological Society, 19(6), 635645. doi: 10.1017/S1355617713000313
Davis, D.G., Schmitt, F.A., Wekstein, D.R., & Markesbery, W.R. (1999). Alzheimer neuropathologic alterations in aged cognitively normal subjects. Journal of Neuropathology and Experimental Neurology, 58(4), 376388.
Edmonds, E.C., Delano-Wood, L., Clark, L.R., Jak, A.J., Nation, D.A., McDonald, C.R., & Bondi, M.W. (2015). Susceptibility of the conventional criteria for mild cognitive impairment to false positive diagnostic errors. Alzheimer’s & Dementia, 11(4), 415424. doi: 10.1016/j.jalz.2014.03.005
Edmonds, E.C., Delano-Wood, L., Galasko, D.R., Salmon, D.P., & Bondi, M.W. (2015). Subtle cognitive decline and biomarker staging in preclinical Alzheimer’s Disease. Journal of Alzheimer’s Disease, 47(1), 231242. doi: 10.3233/JAD-150128
Edmonds, E.C., Delano-Wood, L., Jak, A.J., Galasko, D.R., Salmon, D.P., & Bondi, M.W. (2016). “Missed” mild cognitive impairment: High false-negative error rate based on conventional diagnostic criteria. Journal of Alzheimer’s Disease, 52, 685691. doi: 10.3233/JAD-150986
Edmonds, E.C., Eppig, J., Bondi, M.W., Leyden, K.M., Goodwin, B., Delano-Wood, L., & McDonald, C.R. (in press). Heterogeneous cortical atrophy patterns in MCI not captured by conventional diagnostic criteria. Neurology.
Eggert, L.D., Sommer, J., Jansen, A., Kircher, T., & Konrad, C. (2012). Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS One, 7, e45081. doi: 10.1371/journal.pone.0045081
Giannakopoulos, P., Hof, P.R., Michel, J.P., Guimon, J., & Bouras, C. (1997). Cerebral cortex pathology in aging and Alzheimer’s disease: A quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain Research Reviews, 25(2), 217245.
Hatsuta, H., Takao, M., Ishii, K., Ishiwata, K., Saito, Y., Kanemaru, K., & Murayama, S. (2015). Amyloid β accumulation assessed with 11C-Pittsburgh compound B PET and postmortem neuropathology. Current Alzheimer Research, 12(3), 278286.
Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., Petersen, R.C., Kokmen, E., & Kurland, L.T. (1992). Mayo’s older Americans normative studies: Updated AVLT norms for ages 56 to 97. Clinical Neuropsychologist, 6, 83104.
Jack, C.R., Jr., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., & Trojanowski, J.Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9(1), 119128. doi: 10.1016/S1474-4422(09)70299-6
Jack, C.R. Jr., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., & Trojanowski, J.Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207216. doi: 10.1016/S1474-4422(12)70291-0
Jack, C.R. Jr., Knopman, D.S., Weigand, S.D., Wiste, H.J., Vemuri, P., Lowe, V., & Petersen, R.C. (2012). An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Annals of Neurology, 71(6), 765775. doi: 10.1002/ana.22628
Jack, C.R., Jr., Wiste, H.J., Weigand, S.D., Knopman, D.S., Lowe, V., Vemuri, P., & Petersen, R.C. (2013). Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology, 81(20), 17321740. doi: 10.1212/01.wnl.0000435556.21319.e4
Jagust, W.J., Landau, S.M., Shaw, L.M., Trojanowski, J.Q., Koeppe, R.A., Reiman, E.M., & Mathis, C.A. (2009). Relationships between biomarkers in aging and dementia. Neurology, 73(15), 11931199.
Jak, A.J., Bondi, M.W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D.P., & Delis, D.C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. American Journal of Geriatric Psychiatry, 17(5), 368375. doi: 10.1097/JGP.0b013e31819431d5
Jansen, W.J., Ossenkoppele, R., Knol, D.L., Tijms, B.M., Scheltens, P., Verhey, F.R., & Zetterberg, H. (2015). Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. Journal of the American Medical Association, 313(19), 19241938. doi: 10.1001/jama.2015.4668
Jedynak, B.M., Lang, A., Liu, B., Katz, E., Zhang, Y., Wyman, B.T., & Prince, J.L. (2012). A computational neurodegenerative disease progression score: Method and results with the Alzheimer’s disease neuroimaging initiative cohort. Neuroimage, 63(3), 14781486. doi: 10.1016/j.neuroimage.2012.07.059
Joshi, A.D., Pontecorvo, M.J., Clark, C.M., Carpenter, A.P., Jennings, D.L., Sadowsky, C.H., & Skovronsky, D.M. (2012). Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects. Journal of Nuclear Medicine, 53(3), 378384. doi: 10.2967/jnumed.111.090340
Klunk, W.E., Price, J.C., Mathis, C.A., Tsopelas, N.D., Lopresti, B.J., Ziolko, S.K., & DeKosky, S.T. (2007). Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. Journal of Neuroscience, 27(23), 61746184.
Knopman, D.S., Jack, C.R. Jr., & Wiste, H.J. (2012). Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology, 78(20), 15761582. doi: 10.1212/WNL.0b013e3182563bbe
Landau, S.M., Breault, C., Joshi, A.D., Pontecorvo, M., Mathis, C.A., Jagust, W.J., & Mintun, M.A. (2013). Amyloid-beta imaging with Pittsburgh compound B and florbetapir: Comparing radiotracers and quantification methods. Journal of Nuclear Medicine, 54(1), 7077. doi: 10.2967/jnumed.112.109009
Landau, S.M., Harvey, D., Madison, C.M., Reiman, E.M., Foster, N.L., Aisen, P.S., & Jagust, W.J. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. Neurology, 75(3), 230238. doi: 10.1212/WNL.0b013e3181e8e8b8
Landau, S.M., Lu, M., Joshi, A.D., Pontecorvo, M., Mintun, M.A., Trojanowski, J.Q., & Shaw, L.M. (2013). Comparing PET imaging and CSF measurements in Aβ. Annals of Neurology, 74(6), 826836. doi: 10.1002/ana.23908
Leinonen, V., Alafuzoff, I., Aalto, S., Suotunen, T., Savolainen, S., Nagren, K., & Rinner, J.O. (2008). Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Archives of Neurology, 65(10), 13041309.
Leuzy, A., Zimmer, E.R., Heurling, K., Rosa-Neto, P., & Gauthier, S. (2014). Use of amyloid PET across the spectrum of Alzheimer’s disease: Clinical utility and associated ethical issues. Amyloid, 21(3), 143148. doi: 10.3109/13506129.2014.926267
Mormino, E.C., Kluth, J.T., Madison, C.M., Rabinovici, G.D., Baker, S.L., Miller, B.L., & Jagust, M.J. (2009). Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain, 132, 13101323.
Nettiksimmons, J., Beckett, L., Schwarz, C., Carmichael, O., Fletcher, E., & Decarli, C. (2013). Subgroup of ADNI normal controls characterized by atrophy and cognitive decline associated with vascular damage. Psychology and Aging, 28, 191201. doi: 10.1037/a0031063
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194.
Petersen, R.C., Aisen, P.S., Beckett, L.A., Donohue, M.C., Gamst, A.C., Harvey, D.J., & Weiner, M.W. (2010). Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical characterization. Neurology, 74(3), 201209. doi: 10.1212/WNL.0b013e3181cb3e25
Price, J.L., Davis, P.B., Morris, J.C., & White, D.L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12(4), 295312.
Price, J.L., McKeel, D.W., Jr., Buckles, V.D., Roe, C.M., Xiong, C., Grundman, M., & Morris, J.C. (2009). Neuropathology of nondemented aging: Presumptive evidence for preclinical Alzheimer disease. Neurobiology of Aging, 30(7), 10261036.
Rodrigue, K.M., Kennedy, K.M., Devous, M.D. Sr., Rieck, J.R., Hebrank, A.C., Diaz-Arrastia, R., & Park, D.C. (2012). β-Amyloid burden in healthy aging: Regional distribution and cognitive consequences. Neurology, 78(6), 387395. doi: 10.1212/WNL.0b013e318245d295
Rowe, C.C., Ng, S., Ackermann, U., Gong, S.J., Pike, K., Savage, G., & Villemagne, V.L. (2007). Imaging beta-amyloid burden in aging and dementia. Neurology, 68(20), 17181725. doi: 10.1212/01.wnl.0000261919.22630.ea
Royston, P., Altman, D.G., & Sauerbrei, W. (2006). Dichotomizing continuous predictors in multiple regression: A bad idea. Statistics in Medicine, 25, 127141.
Shaw, L.M., Vanderstichele, H., Knapik-Czajka, M., Clark, C.M., Aisen, P.S., Petersen, R.C., & Trojanowski, J.Q. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65(4), 403413. doi: 10.1002/ana.21610
Shirk, S.D., Mitchell, M.B, Shaughnessy, L.W., Sherman, J.C., Locascio, J.J., Weintraub, S., & Atri, A. (2011). A web-based normative calculator for the uniform data set (UDS) neuropsychological test battery. Alzheimer’s Research & Therapy, 3(6), 32. doi: 10.1186/alzrt94
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., & Phelps, C.H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 280292. doi: 10.1016/j.jalz.2011.03.003
Sperling, R., Mormino, E., & Johnson, K. (2014). The evolution of preclinical Alzheimer’s disease: Implications for prevention trials. Neuron, 84(3), 608622. doi: 10.1016/j.neuron.2014.10.038
Suenaga, T., Hirano, A., Llena, J.F, Yen, S.H., & Dickson, D.W. (1990). Modified Bielschowsky stain and immunohistochemical studies on striatal plaques in Alzheimer’s disease. Acta Neuropathologica, 80(3), 280286.
Thal, D.R., Rüb, U., Orantes, M., & Braak, H. (2002). Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology, 58(12), 17912000.
Toledo, J.B., Bjerke, M., Da, X., Landau, S.M., Foster, N.L., Jagust, W., & Trojanowski, J.Q. (2015). Nonlinear association between cerebrospinal fluid and florbetapir F-18 β-amyloid measures across the spectrum of Alzheimer disease. JAMA Neurology, 72(5), 571581.
Toledo, J.B., Cairns, N.J., Da, X., Chen, K., Carter, D., Fleisher, A., & Trojanoswki, J.Q. (2013). Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathologica Communications, 1, 65. doi: 10.1186/2051-5960-1-65
Toledo, J.B., Weiner, M.W., Wolk, D.A., Da, X., Chen, K., Arnold, S.E., & Trojanowski, J.Q. (2014). Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathologica Communications, 2, 26.
Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N.R., Chui, H., & Morris, J.C. (2009). The Alzheimer’s disease centers’ uniform data set (UDS): The neuropsychologic test battery. Alzheimer Disease and Associated Disorders, 23(2), 91101. doi: 10.1097/WAD.0b013e318191c7dd


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Edmonds supplementary material
Edmonds supplementary material 1

 Word (406 KB)
406 KB

Patterns of Cortical and Subcortical Amyloid Burden across Stages of Preclinical Alzheimer’s Disease

  • Emily C. Edmonds (a1), Katherine J. Bangen (a1) (a2), Lisa Delano-Wood (a1) (a2), Daniel A. Nation (a3), Ansgar J. Furst (a4) (a5), David P. Salmon (a6), Mark W. Bondi (a1) (a2) and for the Alzheimer’s Disease Neuroimaging Initiative...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.