Skip to main content Accessibility help
×
Home

Intraindividual Cognitive Variability in Middle Age Predicts Cognitive Impairment 8–10 Years Later: Results from the Wisconsin Registry for Alzheimer’s Prevention

  • Rebecca L. Koscik (a1), Sara E. Berman (a2), Lindsay R. Clark (a1) (a2), Kimberly D. Mueller (a1), Ozioma C. Okonkwo (a1), Carey E. Gleason (a1) (a2) (a3), Bruce P. Hermann (a1) (a4), Mark A. Sager (a1) and Sterling C. Johnson (a1) (a2) (a3)...

Abstract

Objectives: Intraindividual cognitive variability (IICV) has been shown to differentiate between groups with normal cognition, mild cognitive impairment (MCI), and dementia. This study examined whether baseline IICV predicted subsequent mild to moderate cognitive impairment in a cognitively normal baseline sample. Methods: Participants with 4 waves of cognitive assessment were drawn from the Wisconsin Registry for Alzheimer’s Prevention (WRAP; n=684; 53.6(6.6) baseline age; 9.1(1.0) years follow-up; 70% female; 74.6% parental history of Alzheimer’s disease). The primary outcome was Wave 4 cognitive status (“cognitively normal” vs. “impaired”) determined by consensus conference; “impaired” included early MCI (n=109), clinical MCI (n=11), or dementia (n=1). Primary predictors included two IICV variables, each based on the standard deviation of a set of scores: “6 Factor IICV” and “4 Test IICV”. Each IICV variable was tested in a series of logistic regression models to determine whether IICV predicted cognitive status. In exploratory analyses, distribution-based cutoffs incorporating memory, executive function, and IICV patterns were used to create and test an MCI risk variable. Results: Results were similar for the IICV variables: higher IICV was associated with greater risk of subsequent impairment after covariate adjustment. After adjusting for memory and executive functioning scores contributing to IICV, IICV was not significant. The MCI risk variable also predicted risk of impairment. Conclusions: While IICV in middle-age predicts subsequent impairment, it is a weaker risk indicator than the memory and executive function scores contributing to its calculation. Exploratory analyses suggest potential to incorporate IICV patterns into risk assessment in clinical settings. (JINS, 2016, 22, 1016–1025)

Copyright

Corresponding author

Correspondence and reprint requests to: Rebecca Koscik, Wisconsin Alzheimer’s Institute, 7818 Big Sky Drive, Suite 215, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719. E-mail: rekoscik@wisc.edu

References

Hide All
Aisen, P.S., Petersen, R.C., Donohue, M.C., Gamst, A., Raman, R., Thomas, R.G., & Weiner, M.W. (2010). Clinical core of the Alzheimer’s disease neuroimaging initiative: Progress and plans. Alzheimer’s & Dementia, 6(3), 239246. http://doi.org/10.1016/j.jalz.2010.03.006.
Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., & Petersen, R.C. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270279.
Andersson, C., Lindau, M., Almkvist, O., Engfeldt, P., Johansson, S.-E., & Eriksdotter Jönhagen, M. (2006). Identifying patients at high and low risk of cognitive decline using Rey Auditory Verbal Learning Test among middle-aged memory clinic outpatients. Dementia and Geriatric Cognitive Disorders, 21(4), 251259.
Bondi, M.W., Edmonds, E.C., Jak, A.J., Clark, L.R., Delano-Wood, L., McDonald, C.R., & Galasko, D. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. Journal of Alzheimer’s Disease, 42(1), 275289.
Clark, L.R., Koscik, R.L., Nicholas, C.R., Okonkwo, O.C., Engelman, C.D., Bratzke, L.C., & Johnson, S.C. (2016). Mild cognitive impairment in late middle age in the Wisconsin Registry for Alzheimer’s Prevention (WRAP) study: Prevalence and characteristics using robust and standard neuropsychological normative data. [Epub ahead of print].
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155.
Dowling, N.M., Hermann, B., La Rue, A., & Sager, M.A. (2010). Latent structure and factorial invariance of a neuropsychological test battery for the study of preclinical Alzheimer’s disease. Neuropsychology, 24(6), 742756. http://doi.org/10.1037/a0020176.
Drebing, C.E., Van Gorp, W.G., Stuck, A.E., Mitrushina, M., & Beck, J. (1994). Early detection of cognitive decline in higher cognitively functioning older adults: Sensitivity and specificity of a neuropsychological screening battery. Neuropsychology, 8(1), 31.
Duara, R., Loewenstein, D.A., Greig, M.T., Potter, E., Barker, W., Raj, A., & Potter, H. (2011). Pre-MCI and MCI: Neuropsychological, clinical, and imaging features and progression rates. The American Journal of Geriatric Psychiatry, 19(11), 951960. http://doi.org/10.1097/JGP.0b013e3182107c69
Grice, J.W. (2001). Computing and evaluating factor scores. Psychological Methods, 6(4), 430.
Heaton, R., Miller, S., Taylor, J.R., & Grant, I. (2004). Comprehensive norms for an expanded Halstead-Reitan battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults (HRB). Professional Manual. Lutz, FL: Psychological Assessment Resources Inc..
Hilborn, J.V., Strauss, E., Hultsch, D.F., & Hunter, M.A. (2009). Intraindividual variability across cognitive domains: Investigation of dispersion levels and performance profiles in older adults. Journal of Clinical and Experimental Neuropsychology, 31(4), 412424.
Holtzer, R., Verghese, J., Wang, C., Hall, CB., & Lipton, RB. (2008). WIthin-person across-neuropsychological test variability and incident dementia. JAMA, 300(7), 823830. http://doi.org/10.1001/jama.300.7.823.
Imtiaz, B., Tolppanen, A.-M., Kivipelto, M., & Soininen, H. (2014). Future directions in Alzheimer’s disease from risk factors to prevention. Biochemical Pharmacology, 88(4), 661670.
Jessen, F., Wolfsgruber, S., Wiese, B., Bickel, H., Mösch, E., Kaduszkiewicz, H., & Wagner, M. (2014). AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimer’s & Dementia, 10(1), 7683. http://doi.org/10.1016/j.jalz.2012.09.017.
Kälin, A.M., Pflüger, M., Gietl, A.F., Riese, F., Jäncke, L., Nitsch, R.M., && Hock, C. (2014). Intraindividual variability across cognitive tasks as a potential marker for prodromal Alzheimer’s disease. Frontiers in Aging Neuroscience, 6, 147.
Koepsell, T.D., & Monsell, S.E. (2012). Reversion from mild cognitive impairment to normal or near-normal cognition Risk factors and prognosis. Neurology, 79(15), 15911598.
Koscik, R.L., La Rue, A., Jonaitis, E.M., Okonkwo, O.C., Johnson, S.C., Bendlin, B.B., & Sager, M.A. (2014). Emergence of mild cognitive impairment in late middle-aged adults in the Wisconsin registry for Alzheimer’s prevention. Dementia and Geriatric Cognitive Disorders, 38(1–2), 1630. http://doi.org/10.1159/000355682.
Lewis, F., Butler, A., & Gilbert, L. (2011). A unified approach to model selection using the likelihood ratio test. Methods in Ecology and Evolution, 2(2), 155162. http://doi.org/10.1111/j.2041-210X.2010.00063.x
MacDonald, S.W., Hultsch, D.F., & Dixon, R.A. (2003). Performance variability is related to change in cognition: Evidence from the Victoria Longitudinal Study. Psychology and Aging, 18(3), 510.
Petersen, R.C., Aisen, P.S., Beckett, L.A., Donohue, M.C., Gamst, A.C., Harvey, D.J., & Toga, A.W. (2010). Alzheimer’s disease Neuroimaging Initiative (ADNI) clinical characterization. Neurology, 74(3), 201209.
Sager, M.A., Hermann, B., & La Rue, A. (2005). Middle-aged children of persons with Alzheimer’s disease: APOE genotypes and cognitive function in the Wisconsin Registry for Alzheimer’s Prevention. Journal of Geriatric Psychiatry and Neurology, 18(4), 245249. http://doi.org/10.1177/0891988705281882
Salthouse, T.A., & Soubelet, A. (2014). Heterogeneous ability profiles may be a unique indicator of impending cognitive decline. Neuropsychology, 28(5), 812.
Schmidt, M. (1996). Rey auditory verbal learning test: A handbook. Los Angeles: Western Psychological Services.
Sperling, R.A., Karlawish, J., & Johnson, K.A. (2013). Preclinical Alzheimer disease —the challenges ahead. Nature Reviews. Neurology, 9(1), 5458. http://doi.org/10.1038/nrneurol.2012.241
Vaughan, L., Leng, I., Dagenbach, D., Resnick, S.M., Rapp, S.R., Jennings, J.M., & Coker, L.H. (2013). Intraindividual variability in domain-specific cognition and risk of mild cognitive impairment and dementia. Current Gerontology and Geriatrics Research, 2013, 495793.
Wechsler, D. (1987). WMS-R: Wechsler memory scale-revised. San Antonio, TX: Psychological Corporation.
Wilkinson, G.S. (1993). WRAT-3: Wide range achievement test. San Antonio, TX: Pearson.

Keywords

Type Description Title
WORD
Supplementary materials

Koscik supplementary material
Figures S1-S4

 Word (80 KB)
80 KB
WORD
Supplementary materials

Koscik supplementary material
Description of Tables S1-S3 and Figures S1-S4

 Word (20 KB)
20 KB
WORD
Supplementary materials

Koscik supplementary material
Table S1

 Word (22 KB)
22 KB
WORD
Supplementary materials

Koscik supplementary material
Table S2

 Word (20 KB)
20 KB
WORD
Supplementary materials

Koscik supplementary material
Table S3

 Word (20 KB)
20 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed