Skip to main content Accessibility help
×
Home

WHITTAKER PERIODS, MOTIVIC PERIODS, AND SPECIAL VALUES OF TENSOR PRODUCT $L$ -FUNCTIONS

  • Harald Grobner (a1) and Michael Harris (a2) (a3) (a4) (a5)

Abstract

Let ${\mathcal{K}}$ be an imaginary quadratic field. Let ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ be irreducible generic cohomological automorphic representation of $\text{GL}(n)/{\mathcal{K}}$ and $\text{GL}(n-1)/{\mathcal{K}}$ , respectively. Each of them can be given two natural rational structures over number fields. One is defined by the rational structure on topological cohomology, and the other is given in terms of the Whittaker model. The ratio between these rational structures is called a Whittaker period. An argument presented by Mahnkopf and Raghuram shows that, at least if ${\rm\Pi}$ is cuspidal and the weights of ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ are in a standard relative position, the critical values of the Rankin–Selberg product $L(s,{\rm\Pi}\times {\rm\Pi}^{\prime })$ are essentially algebraic multiples of the product of the Whittaker periods of ${\rm\Pi}$ and ${\rm\Pi}^{\prime }$ . We show that, under certain regularity and polarization hypotheses, the Whittaker period of a cuspidal ${\rm\Pi}$ can be given a motivic interpretation, and can also be related to a critical value of the adjoint $L$ -function of related automorphic representations of unitary groups. The resulting expressions for critical values of the Rankin–Selberg and adjoint $L$ -functions are compatible with Deligne’s conjecture.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      WHITTAKER PERIODS, MOTIVIC PERIODS, AND SPECIAL VALUES OF TENSOR PRODUCT $L$ -FUNCTIONS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      WHITTAKER PERIODS, MOTIVIC PERIODS, AND SPECIAL VALUES OF TENSOR PRODUCT $L$ -FUNCTIONS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      WHITTAKER PERIODS, MOTIVIC PERIODS, AND SPECIAL VALUES OF TENSOR PRODUCT $L$ -FUNCTIONS
      Available formats
      ×

Copyright

References

Hide All
1. Ash, A., Non-square-integrable cohomology classes of arithmetic groups, Duke J. Math. 47 (1980), 435449.
2. Beuzart-Plessis, R., La conjecture locale de Gross–Prasad pour les représentations tempérées des groupes unitaires, Preprint, 2012, arXiv:1205.2987v2.
3. Borel, A. and Serre, J.-P., Corners and arithmetic groups, Comm. Math. Helvet. 48 (1973), 436491.
4. Caraiani, A., Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J. 161 (2012), 23112413.
5. Clozel, L., Motifs et Formes Automorphes: Applications du Principe de Fonctorialité, in Automorphic Forms, Shimura Varieties, and L-Functions, Vol. I, Ann Arbor, MI, 1988 (ed. Clozel, L. and Milne, J. S.), Perspectives in Mathematics, Volume 10, pp. 77159 (Academic Press, Boston, MA, 1990).
6. Clozel, L., Harris, M. and Labesse, J.-P., Construction of automorphic Galois representations, I, in The Stable Trace Formula, Shimura Varieties, and Arithmetic Applications. Volume I: Stabilization of the Trace Formula (ed. Clozel, L. et al. ), pp. 497527 (International Press, Boston, 2011).
7. Cogdell, J. W. and Piatetski-Shapiro, I. I. , Remarks on Rankin–Selberg convolutions, in Contributions to Automorphic Forms, Geometry, and Number Theory (ed. Hida, H., Ramakrishnan, D. and Shahidi, F. ), pp. 255278 (Johns Hopkins University Press, Baltimore, 2004).
8. Deligne, P., Valeurs de fonctions L et périodes d’intégrales, with an appendix by N. Koblitz and A. Ogus, in Proc. Sympos. Pure Math., Volume XXXIII, part II, pp. 313346 (American Mathematical Society, Providence, RI, 1979).
9. Franke, J., Harmonic analysis in weighted L 2 -spaces, Ann. Sci. Éc. Norm. Supér. (4) 31 2 (1998), 181279.
10. Franke, J. and Schwermer, J., A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann. 311 (1998), 765790.
11. Goodman, R. and Wallach, N., Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, volume 255 (Springer, Dordrecht, 2009).
12. Gordon, J., Transfer to characteristic zero: Appendix to [ 49 ], Duke Math. J. 156 (2011), 220227.
13. Grobner, H., Residues of Eisenstein series and the automorphic cohomology of reductive groups, Compos. Math. 149 (2013), 10611090.
14. Grobner, H., Harris, M. and Lapid, E., Whittaker rational structures and special values of the Asai $L$ -function, Contemp. Math. to appear.
15. Grobner, H. and Raghuram, A., On some arithmetic properties of automorphic forms of GL m over a division algebra, Int. J. Number Theory 10 (2014), 9631013.
16. Grobner, H. and Raghuram, A., On the arithmetic of Shalika models and the critical values of L-functions for GL2n , with an appendix by Wee Teck Gan, Amer. J. Math. 136 (2014), 675728.
17. Harder, G., Some results on the Eisenstein cohomology of arithmetic subgroups of GL n , in Cohomology of Arithmetic Groups and Automorphic Forms (ed. Labesse, J.-P. and Schwermer, J.), Lecture Notes in Mathematics, Volume 1447, pp. 85153 (Springer, 1990).
18. Harder, G. and Raghuram, A., Eisenstein cohomology for $\text{GL}_{N}$ and ratios of critical values of Rankin–Selberg $L$ -functions - I, manuscript (2014).
19. Harris, R. N., The refined Gross–Prasad conjecture for unitary groups, Compos. Math. (to appear).
20. Harris, M., L-functions and periods of polarized regular motives, J. Reine Angew. Math. 483 (1997), 75161.
21. Harris, M., A simple proof of rationality of Siegel–Weil Eisenstein series, in Eisenstein Series and Applications (ed. Gan, W. T., Kudla, S. S. and Tschinkel, Y.), Progress in Mathematics, Volume 258, pp. 149186 (Birkhäuser Boston, Boston, 2008).
22. Harris, M., Cohomological automorphic forms on unitary groups, II: period relations and values of L-functions, in Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory, Vol. 12 (ed. Li, J.-S. et al. ), Lecture Notes Series, pp. 89150 (Institute of Mathematical Sciences, National University of Singapore, 2007).
23. Harris, M., L-functions and periods of adjoint motives, Algebra Number Theory 7 (2013), 117155.
24. Harris, M. and Labesse, J.-P. , Conditional base change for unitary groups, Asian J. Math. 8 (2004), 653683.
25. Ichino, A. and Yamana, S. , Periods of automorphic forms: the case of (GL n+1 × GL n , GL n ), Compos. Math. (in press).
26. Ichino, A. and Zhang, W. , Spherical characters for a strongly tempered pair, appendix to [ 50 ].
27. Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J., Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), 199214.
28. Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J., Rankin–Selberg convolutions, Amer. J. Math. 105 (1983), 367464.
29. Jacquet, H. and Shalika, J., The Whittaker models of induced representations, Pacific J. Math. 109 (1983), 107120.
30. Kaletha, T., Minguez, A., Shin, S. W. and White, P.-J., Endoscopic classification of representations: inner forms of unitary groups, Preprint, 2014, arXiv:1409.3731.
31. Labesse, J.-P., Changement de base CM et séries discrètes, in On the Stabilization of the Trace Formula, Vol. I (ed. Clozel, L., Harris, M., Labesse, J.-P. and Ngô, B.-C.), pp. 429470 (International Press, Boston, MA, 2011).
32. Li, J.-S. and Schwermer, J., On the Eisenstein cohomology of arithmetic groups, Duke Math. J. 123 (2004), 141169.
33. Jie, L., Period relations for automorphic induction and applications, I, manuscript, Comptes Rendus Math. 353 (2015), 95100.
34. Mahnkopf, J., Cohomology of arithmetic groups, parabolic subgroups and the special values of automorphic L-Functions on GL(n), J. Inst. Math. Jussieu 4 (2005), 553637.
35. Mahnkopf, J., Modular symbols and values of L-functions on GL3 , J. Reine Angew. Math. 497 (1998), 91112.
36. Mœglin, C. and Waldspurger, J.-L., Spectral Decomposition and Eisenstein Series (Cambridge University Press, 1995).
37. Mok, Ch. P., Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235(1108) (in press).
38. Raghuram, A., Critical values of Rankin–Selberg $L$ -functions for $\text{GL}_{n}\times \text{GL}_{n-1}$ and the symmetric cube $L$ -functions for $\text{GL}_{2}$ . With an appendix by Chandrasheel Bhagwat, Preprint, 2014.
39. Raghuram, A., On the special values of certain Rankin–Selberg L-functions and applications to odd symmetric power L-functions of modular forms, Int. Math. Res. Not. IMRN 2010(2) (2009), 334372.
40. Raghuram, A. and Shahidi, F., On certain period relations for cusp forms on $\text{GL}_{n}$ , Int. Math. Res. Not. IMRN (2008), doi:10.1093/imrn/rnn077.
41. Rohlfs, J., Projective limits of locally symmetric spaces and cohomology, J. Reine Angew. Math. 479 (1996), 149182.
42. Shahidi, F., Eisenstein Series and Automorphic L-Functions, Colloquium Publications, Volume 58 (American Mathematical Society, 2010).
43. Schwermer, J., Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lecture Notes in Mathematics, Volume 988 (Springer-Verlag, 1983).
44. Sun, B., The nonvanishing hypothesis at infinity for Rankin–Selberg convolutions, Preprint, 2013, arXiv:1307.5357.
45. Urban, E., Formes automorphes cuspidales pour GL(2) sur un corps quadratique imaginaire. Valeurs spéciales de fonction L et congruences, Compos. Math. 99 (1995), 283324.
46. Waldspurger, J.-L., Quelques propriétés arithmétiques de certaines formes automorphes sur GL(2), Compos. Math. 54 (1985), 121171.
47. Yoshida, H., On a conjecture of Shimura concerning periods of Hilbert modular forms, Amer. J. Math. 117 (1995), 10191038.
48. Yoshida, H., Motives and Siegel modular forms, Amer. J. Math. 123 (2001), 11711197.
49. Yun, Z., Duke Math. J. 156 (2011), 167228.
50. Zhang, W., Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups, Ann. of Math. 180 (2014), 9711049.
51. Zhang, W., Automorphic period and the central value of Rankin–Selberg L-function, J. Amer. Math. Soc. 27 (2014), 541612.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

WHITTAKER PERIODS, MOTIVIC PERIODS, AND SPECIAL VALUES OF TENSOR PRODUCT $L$ -FUNCTIONS

  • Harald Grobner (a1) and Michael Harris (a2) (a3) (a4) (a5)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed