Skip to main content Accessibility help
×
Home

Unipotent differential algebraic groups as parameterized differential Galois groups

Abstract

We deal with aspects of direct and inverse problems in parameterized Picard–Vessiot (PPV) theory. It is known that, for certain fields, a linear differential algebraic group (LDAG) $G$ is a PPV Galois group over these fields if and only if $G$ contains a Kolchin-dense finitely generated group. We show that, for a class of LDAGs $G$ , including unipotent groups, $G$ is such a group if and only if it has differential type $0$ . We give a procedure to determine if a parameterized linear differential equation has a PPV Galois group in this class and show how one can calculate the PPV Galois group of a parameterized linear differential equation if its Galois group has differential type $0$ .

Copyright

References

Hide All
1.Arreche, C., Computing the differential Galois group of a one-parameter family of second order linear differential equations, (2012), (URL http://arxiv.org/abs/1208.2226).
2.Cassidy, P., Differential algebraic groups, Amer. J. Math. 94 (1972), 891954(URL http://www.jstor.org/stable/2373764).
3.Cassidy, P., The differential rational representation algebra on a linear differential algebraic group, J. Algebra 37 (2) (1975), 223238(URL http://dx.doi.org/10.1016/0021-8693(75)90075-7).
4.Cassidy, P., Unipotent differential algebraic groups, in Contributions to algebra: Collection of papers dedicated to Ellis Kolchin, pp. 83115 (Academic Press, 1977).
5.Cassidy, P., The classification of the semisimple differential algebraic groups and linear semisimple differential algebraic Lie algebras, J. Algebra 121 (1) (1989), 169238(URL http://dx.doi.org/10.1016/0021-8693(89)90092-6).
6.Cassidy, P. and Singer, M., Galois theory of parametrized differential equations and linear differential algebraic group, IRMA Lect. Math. Theoret. Phys. 9 (2007), 113157 (URL http://dx.doi.org/10.4171/020-1/7).
7.Compoint, E. and Singer, M., Computing Galois groups of completely reducible differential equations, J. Symbolic Comput. 28 (4–5) (1999), 473494(URL http://dx.doi.org/10.1006/jsco.1999.0311).
8.Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras. (AMS Chelsea Publishing, Providence, RI, 2006), (reprint of the 1962 original).
9.Deligne, P. and Milne, J., Tannakian categories, in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, Volume 900, pp. 101228 (Springer-Verlag, Berlin, 1981), (URL http://dx.doi.org/10.1007/978-3-540-38955-2_4).
10.Dreyfus, T., Computing the Galois group of some parameterized linear differential equation of order two, Proceedings of the American Mathematical Society (2012), in press, URL http://arxiv.org/abs/1110.1053.
11.Dreyfus, T., A density theorem for parameterized differential Galois theory, (2012), (URL http://arxiv.org/abs/1203.2904).
12.Gillet, H., Gorchinskiy, S. and Ovchinnikov, A., Parameterized Picard–Vessiot extensions and Atiyah extensions, Adv. Math. 238 (2013), 322411(URL http://dx.doi.org/10.1016/j.aim.2013.02.006).
13.Gorchinskiy, S. and Ovchinnikov, A., Isomonodromic differential equations and differential categories, (2012), (URL http://arxiv.org/abs/1202.0927).
14.Grigoriev, D. Y., Complexity for irreducibility testing for a system of linear ordinary differential equations, in Proceedings of the international symposium on symbolic and algebraic computation- ISSAC’90 (ed. Nagata, M. and Watanabe, S.). pp. 225230 (ACM Press, 1990), (URL http://dx.doi.org/10.1145/96877.96932).
15.Grigoriev, D. Y., Complexity of factoring and calculating the gcd of linear ordinary differential operators, J. Symbolic Comput. 10 (1) (1990), 738(URL http://dx.doi.org/10.1016/S0747-7171(08)80034-X).
16.Hardouin, C. and Singer, M., Differential Galois theory of linear difference equations, Math. Ann. 342 (2) (2008), 333377(URL http://dx.doi.org/10.1007/s00208-008-0238-z).
17.Hrushovski, E., Computing the Galois group of a linear differential equation, Banach Center Publ. 58 (2002), 97138 (URL http://dx.doi.org/10.4064/bc58-0-9).
18.Kamensky, M., Tannakian formalism over fields with operators, Int. Math. Res. Not. 361 (2012), 163171 (URL http://dx.doi.org/10.1093/imrn/rns190).
19.Kamensky, M., Model theory and the Tannakian formalism, Trans. Amer. Math. Soc. (2013), in press, (URL http://arxiv.org/abs/0908.0604).
20.Kaplansky, I., An introduction to differential algebra. (1957).
21.Kolchin, E., Algebraic matric groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2) 49 (1) (1948), 142(URL http://www.jstor.org/stable/1969111).
22.Kolchin, E. R., Algebraic groups and algebraic dependence, Amer. J. Math. 90 (1968), 11511164 (URL http://www.jstor.org/stable/2373294).
23.Kolchin, E., Differential algebra and algebraic groups. (Academic Press, New York, 1973).
24.Kolchin, E., Differential algebraic groups. (Academic Press, New York, 1985).
25.Landesman, P., Generalized differential Galois theory, Trans. Amer. Math. Soc. 360 (8) (2008), 44414495 (URL http://dx.doi.org/10.1090/S0002-9947-08-04586-8).
26.Manin, J. I., Algebraic curves over fields with differentiation, Izv. Akad. Nauk SSSR. Ser. Mat. 22 (1958), 737756 An English translation appears in Transl. Amer. Math. Soc., Ser., Series 2, Twenty-two papers on algebra, number theory and differential geometry 37 (1964) pp. 59–78.
27.Minchenko, A. and Ovchinnikov, A., Zariski closures of reductive linear differential algebraic groups, Adv. Math. 227 (3) (2011), 11951224(URL http://dx.doi.org/10.1016/j.aim.2011.03.002).
28.Minchenko, A., Ovchinnikov, A. and Singer, M., Reductive linear differential algebraic groups and the Galois groups of parameterized linear differential equations, (2013), (URL http://arxiv.org/abs/1304.2693).
29.Mitschi, C. and Singer, M., Monodromy groups of parameterized linear differential equations with regular singularities, Bull. Lond. Math. Soc. 44 (5) (2012), 913930 (URL http://dx.doi.org/10.1112/blms/bds021).
30.Ovchinnikov, A., Tannakian approach to linear differential algebraic groups, Transform. Groups 13 (2) (2008), 413446(URL http://dx.doi.org/10.1007/s00031-008-9010-4).
31.Ovchinnikov, A., Tannakian categories, linear differential algebraic groups, and parametrized linear differential equations, Transform. Groups 14 (1) (2009), 195223 (URL http://dx.doi.org/10.1007/s00031-008-9042-9).
32.van der Put, M. and Singer, M., Galois theory of linear differential equations. (Springer, Berlin, 2003), (URL http://dx.doi.org/10.1007/978-3-642-55750-7).
33.Singer, M., Linear algebraic groups as parameterized Picard–Vessiot Galois groups, J. Algebra 373 (1) (2013), 153161(URL http://dx.doi.org/10.1016/j.jalgebra.2012.09.037).
34.Springer, T. A., Linear algebraic groups, second edn., Progress in Mathematics, Volume 9 (Birkhäuser Boston Inc,, Boston, MA, 1998), (URL http://dx.doi.org/10.1007/978-0-8176-4840-4).
35.Tretkoff, C. and Tretkoff, M., Solution of the inverse problem in differential Galois theory in the classical case, Amer. J. Math. 101 (1979), 13271332(URL http://www.jstor.org/stable/2374143).
36.Trushin, D., Splitting fields and general differential Galois theory, Sbornik: Mathematics 201 (9) (2010), 13231353(URL http://dx.doi.org/10.1070/SM2010v201n09ABEH004114).
37.Waterhouse, W., Introduction to affine group schemes. (Springer, Berlin, 1979), (URL http://dx.doi.org/10.1007/978-1-4612-6217-6).
38.Wibmer, M., Existence of $\partial $-parameterized Picard–Vessiot extensions over fields with algebraically closed constants, J. Algebra 361 (2012), 163171(URL http://dx.doi.org/10.1016/j.jalgebra.2012.03.035).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed