Skip to main content Accessibility help
×
Home

Trivial zeros of $p$ -adic $L$ -functions at near-central points

Abstract

Using the $\ell $ -invariant constructed in our previous paper we prove a Mazur–Tate–Teitelbaum-style formula for derivatives of $p$ -adic $L$ -functions of modular forms at trivial zeros. The novelty of this result is to cover the near-central point case. In the central point case our formula coincides with the Mazur–Tate–Teitelbaum conjecture proved by Greenberg and Stevens and by Kato, Kurihara and Tsuji at the end of the 1990s.

Copyright

References

Hide All
1. Amice, Y. and Vélu, J., Distributions p-adiques associées aux séries de Hecke, in Journées Arithmétiques de Bordeaux (Bordeaux 1974), Astérisque, Volume 24–25, pp. 119131 (Société Mathématique de France, Paris, 1975).
2. Atkin, A. O. L. and Li, W., Twists of newforms and pseudo-eigenvalues of $W$ -operators, Invent. Math. 48 (1978), 221243.
3. Bellaïche, J., Critical p-adic $L$ -functions, Invent. Math. 189 (2012), 160.
4. Bellaïche, J. and Chenevier, G., p-adic families of Galois representations and higher rank Selmer groups, Astérisque, Volume 324 (Société Mathématique de France, Paris, 2009).
5. Benois, D., On Iwasawa theory of crystalline representations, Duke Math. J. 104 (2000), 211267.
6. Benois, D., Infinitesimal deformations and the $\ell $ -invariant, (extra volume: Andrei A. Suslin’s sixtieth birthday) Doc. Math. (2010), 531.
7. Benois, D., A generalization of Greenberg’s $\mathscr{L} $ -invariant, Amer. J. Math. 133 (2011), 15731632.
8. Benois, D. and Berger, L., Théorie d’Iwasawa des représentations cristallines II, Comment. Math. Helv. 83 (2008), 603677.
9. Berger, L., Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), 219284.
10. Berger, L., Bloch and Kato’s exponential map: three explicit formulas, (extra volume: Kazuya Kato’s fiftieth birthday) Doc. Math. (2003), 99129.
11. Berger, L., Limites de représentations cristallines, Compositio Math. 140 (2004), 14731498.
12. Berger, L., Equations différentielles p-adiques et $(\varphi , N)$ -modules filtrés, in Représentations p-adiques de groupes p-adiques. I. Représentations Galoisiennes et (φ,Γ)-modules, Astérisque, Volume 319, pp. 1338 (Société Mathématique de France, Paris, 2008).
13. Bloch, S. and Kato, K., $L$ -functions and Tamagawa numbers of motives, in Grothendieck Festschrift, Volume 1, Progress in Mathematics, Volume 86, pp. 333400 (Birkhäuser, Boston, MA, 1990).
14. Carayol, H., Sur les représentations $l$ -adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Supér. 19 (1986), 409468.
15. Cherbonnier, F. and Colmez, P., Représentations p-adiques surconvergentes, Invent. Math. 133 (1998), 581611.
16. Cherbonnier, F. and Colmez, P., Théorie d’Iwasawa des représentations p-adiques d’un corps local, J. Amer. Math. Soc. 12 (1999), 241268.
17. Coleman, R., A p-adic Shimura isomorphism and p-adic periods of modular forms, in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston MA 1991), Contemporary Mathematics, Volume 165, pp. 2151 (American Mathematical Society, Providence, RI, 1994).
18. Coleman, R. and Iovita, A., Hidden structures on semi-stable curves, in Représentations p-adiques de groupes p-adiques. III. Global and geometrical methods, Astérisque, Volume 331, pp. 179254 (Société Mathématique de France, Paris, 2010).
19. Colmez, P., Théorie d’Iwasawa des représentations de de Rham d’un corps local, Ann. of Math. (2) 148 (1998), 485571.
20. Colmez, P., Représentations crystallines et représentations de hauteur finie, J. Reine Angew. Math. 514 (1999), 119143.
21. Colmez, P., La conjecture de Birch et Swinnerton-Dyer p-adique, in Séminaire Bourbaki 2002/03, Astérisque, Volume 294, pp. 251319 (Société Mathématique de France, Paris, 2004).
22. Colmez, P., Zéros supplémentaires de fonctions $L~p$ -adiques de formes modulaires, in Algebra and Number Theory, pp. 193210 (Hindustan Book Agency, Delhi, 2005).
23. Colmez, P., Représentations triangulines de dimension 2, in Représentations p-adiques de Groupes p-adiques. I. Représentations Galoisiennes et (φ,Γ)-modules, Astérisque, Volume 319, pp. 213258 (Société Mathématique de France, Paris, 2008).
24. Colmez, P., Fonctions d’une variable p-adique, in Représentations p-adiques de Groupes p-adiques. II. Représentations de GL 2(Q p) et (φ,Γ)-modules, Astérisque, Volume 330, pp. 1359 (Société Mathématique de France, Paris, 2010).
25. Dasgupta, S., Darmon, H. and Pollack, R., Hilbert modular forms and the Gross–Stark conjecture, Ann. of Math. (2) 174 (2011), 439484.
26. Deligne, P., Formes modulaires et représentations $l$ -adiques, in Séminaire Bourbaki 1968/69, Lecture Notes in Mathematics, Volume 179, pp. 139172 (Springer, 1971).
27. Deligne, P., La conjecture de Weil I, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273307.
28. Ferrero, B. and Greenberg, R., On the behavior of p-adic $L$ -functions at $s= 0$ , Invent. Math. 50 (1978/79), 91102.
29. Faltings, G., Hodge–Tate structures and modular forms, Math. Ann. 278 (1–4) (1987), 133149.
30. Faltings, G., Crystalline cohomology and p-adic Galois representations, in Algebraic analysis, geometry and number theory (Baltimore, MD, 1988), pp. 2580 (John Hopkins University Press, Baltimore MD, 1989).
31. Fontaine, J.-M., Représentations p-adiques des corps locaux, in Grothendieck Festschrift, Volume II, Progress in Mathematics, Volume 87, pp. 249309 (Birkhäuser, Boston, MA, 1990).
32. Fontaine, J.-M., Le corps des périodes p-adiques, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, Volume 223, pp. 59102 (Société Mathématique de France, 1994).
33. Fontaine, J.-M., Représentations p-adiques semi-stables, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, Volume 223, pp. 113184 (Société Mathématique de France, 1994).
34. Fontaine, J.-M. and Perrin-Riou, B., Part 1 Autour des conjectures de Bloch et Kato; cohomologie galoisienne et valeurs de fonctions $L$ , in Motives (Seattle, WA, 1991), Proceedings of Symposia in Pure Mathematics, Volume 55, pp. 599706 (American Mathematical Society, Providence, RI, 1994).
35. Greenberg, R., Iwasawa theory of p-adic representations, in Algebraic number theory, Advanced Studies in Pure Mathematics, Volume 17, pp. 97137 (Academic Press, Boston, MA, 1989).
36. Greenberg, R., Trivial zeros of p-adic $L$ -functions, in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston MA 1991), Contemporary Mathematics, Volume 165, pp. 149174 (American Mathematical Society, Providence, RI, 1994).
37. Greenberg, R. and Stevens, G., p-adic $L$ -functions and p-adic periods of modular forms, Invent. Math. 111 (1993), 407447.
38. Gross, B., p-adic $L$ -series at $s= 0$ , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 979994.
39. Gross, B. and Koblitz, N., Gauss sums and the p-adic $\Gamma $ -function, Ann. of Math. 109 (1979), 569581.
40. Herr, L., Sur la cohomologie galoisienne des corps p-adiques, Bull. Soc. Math. France 126 (1998), 563600.
41. Herr, L., Une approche nouvelle de la dualité locale de Tate, Math. Ann. 320 (2001), 307337.
42. Huber, A. and Kings, G., Bloch–Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters, Duke Math. J. 119 (2003), 393464.
43. Iwasawa, K., On explicit formulas for the norm residue symbol, J. Math. Soc. Japan 20 (1968), 151165.
44. Jacquet, H. and Shalika, J., A non-vanishing theorem for zeta functions on ${\mathrm{GL} }_{n} $ , Invent. Math. 38 (1976), 116.
45. Kato, K., Iwasawa theory and p-adic Hodge theory, Kodai Math. J. 16 (1993), 131.
46. Kato, K., p-adic Hodge theory and values of zeta-functions of modular forms, in Cohomologies p-adiques et applications arithmétiques III, Astérisque, Volume 295, pp. 117290 (Société Mathématique de France, 2004).
47. Kato, K., Kurihara, M. and Tsuji, T., Local Iwasawa theory of Perrin-Riou and syntomic complexes, preprint, 1996.
48. Kedlaya, K., A p-adic monodromy theorem, Ann. of Math. (2) 160 (2004), 93184.
49. Kedlaya, K., Pottharst, J. and Xiao, L., Cohomology of arithmetic families of $(\varphi , \Gamma )$ -modules, preprint, 2002, 66 pages (available on http://arxiv.org/abs/1203.5718).
50. Langlands, R. P., Modular forms and $l$ -adic representations, in Modular forms of one variable II, Lecture Notes in Mathematics, Volume 349, pp. 361500 (Springer, 1973).
51. Li, W., Newforms and functional equations, Math. Ann. 212 (1975), 285315.
52. Liu, R., Cohomology and duality for $(\varphi , \Gamma )$ -modules over the Robba ring, Int. Math. Res. Not. 3 (2008), Art. ID rnm150, 32 pages.
53. Manin, Y., Periods of cusp forms and p-adic Hecke series, Math. USSR Sb. 92 (1973), 371393.
54. Mazur, B., On monodromy invariants occurring in global arithmetic and Fontaine’s theory, in p-adic Monodromy and the Birch and Swinnerton-Dyer conjecture (Boston MA 1991), Contemporary Mathematics, Volume 165, pp. 120 (American Mathematical Society, Providence, RI, 1994).
55. Mazur, B., Tate, J. and Teitelbaum, J., On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), 148.
56. Miyake, T., Modular forms, Springer Monographs in Mathematics (Springer, 2006).
57. Nakamura, K., Iwasawa theory of de Rham $(\varphi , \Gamma )$ -modules over the Robba ring, J. Inst. Math. Jussieu. 54 pages, to appear, available on CJO2013. doi: 10.1017/S1474748013000078.
58. Nakamura, K., A generalization of Kato’s local $\varepsilon $ -conjecture for $(\varphi , \Gamma )$ -modules, preprint, 2013, 74 pages (available on http://arxiv.org/abs/1305.0880).
59. Nekovář, J., On p-adic height pairing, in Séminaire de Théorie des Nombres, Paris 1990/91, Progress in Mathematics, Volume 108, pp. 127202 (Birkhäuser, Boston, 1993).
60. Ogg, A., On the eigenvalues of Hecke operators, Math. Ann. 179 (1969), 101108.
61. Orton, L., On exceptional zeros of p-adic $L$ -functions associated to modular forms, PhD thesis, University of Nottingham (2003).
62. Perrin-Riou, B., Théorie d’Iwasawa et hauteurs p-adiques, Invent. Math. 109 (1992), 137185.
63. Perrin-Riou, B., Théorie d’Iwasawa des représentations p-adiques sur un corps local, Invent. Math. 115 (1994), 81149.
64. Perrin-Riou, B., La fonction $L~p$ -adique de Kubota–Leopoldt, in Algebraic geometry (Tempe, AZ, 1993), Contemporary Mathematics, Volume 174, pp. 6593 (American Mathematical Society, Providence, RI, 1994).
65. Perrin-Riou, B., Fonctions $L~p$ -adiques des représentations p-adiques, Astérisque, Volume 229 (Société Mathématique de France, 1995).
66. Perrin-Riou, B., Zéros triviaux des fonctions $L~p$ -adiques, Compositio Math. 114 (1998), 3776.
67. Perrin-Riou, B., Quelques remarques sur la théorie d’Iwasawa des courbes elliptiques, in Number theory for millennium, III (Urbana, IL, 2000), pp. 119147 (A K Peters, Natick, MA, 2002).
68. Perrin-Riou, B., Théorie d’Iwasawa des représentations p-adiques semistables, Mémoires de la Société Mathématique de France (nouvelle série), Volume 84 (Société Mathématique de France, 2001).
69. Pollack, R. and Stevens, G., Critical slope p-adic $L$ -functions, J. Lond. Math. Soc. (2) 87 (2013), 428452.
70. Pottharst, J., Cyclotomic Iwasawa theory of motives, preprint, 2012.
71. Riedel, A., On Perrin-Riou’s exponential map and reciprocity laws, PhD thesis, University of Heidelberg (2013).
72. Rubin, K., Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 64 (1981), 455470.
73. Saito, T., Modular forms and p-adic Hodge theory, Invent. Math. 129 (1997), 607620.
74. Stevens, G., Coleman’s $\mathscr{L} $ -invariant and families of modular forms, in Représentations p-adiques de groupes p-adiques. III. Global and geometrical methods, Astérisque, Volume 331, pp. 112 (Société Mathématique de France, Paris, 2010).
75. Tsuji, T., p-adic etale cohomology and crystalline cohomology in the semistable reduction case, Invent. Math. 137 (1999), 233411.
76. Vishik, M., Non Archimedean measures connected with Dirichlet series, Math. USSR Sb. 28 (1976), 216228.
77. Wach, N., Représentations p-adiques potentiellement cristallines, Bull. Soc. Math. France 124 (1996), 375400.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Trivial zeros of $p$ -adic $L$ -functions at near-central points

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.