Skip to main content Accessibility help
×
Home

The Stokes Structure of a good meromorphic flat bundle

  • Takuro Mochizuki (a1)

Abstract

We give a survey on the Stokes structure of a good meromorphic flat bundle. We also show that a meromorphic flat bundle has the good formal structure if and only if it has a good lattice.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Stokes Structure of a good meromorphic flat bundle
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Stokes Structure of a good meromorphic flat bundle
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Stokes Structure of a good meromorphic flat bundle
      Available formats
      ×

Copyright

References

Hide All
1.Balser, W., Jurkat, W. B. and Lutz, D. A., Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations, J. Math. Analysis Applic. 71 (1979), 4894.
2.Banica, C., Le complété formel d'un espace analytique le long d'un sous-espace: un théoréme de comparaison, Manuscr. Math. 6 (1972), 207244.
3.Bingener, J., Über Formale Komplexe Räume, Manuscr. Math. 24 (1978), 253293.
4.Deligne, P., Équation différentielles à points singuliers reguliers, Lectures Notes in Mathematics, Volume 163 (Springer, 1970).
5.Deligne, P., Malgrange, B. and Ramis, J.-P., Singularités irrégulières, Documents Mathématiques, Volume 5 (Société Mathématique de France, Paris, 2007).
6.Hartshorne, R., On the De Rham cohomology of algebraic varieties, Publ. Math. IHES 45 (1975), 599.
7.Jimbo, M., Miwa, T. and Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, I, General theory and τ-function, Physica D 2 (1981), 306352.
8.Kashiwara, M., Regular holonomic D-modules and distributions on complex manifolds, Adv. Stud. Pure Math. 8 (1987), 199206.
9.Kedlaya, K., Good formal structures for flat meromorphic connections, II, Excellent schemes, J. Am. Math. Soc. 24 (2011), 183229.
10.Kedlaya, K., Good formal structures for flat meromorphic connections, I, Surfaces, Duke Math. J. 154 (2010), 343418.
11.Levelt, A., Jordan decomosition for a class of singular differential operators, Arkiv Mat. 13 (1975), 127
12.Majima, H., Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes in Mathematics, Volume 1075 (Springer, 1984).
13.Malgrange, B., Déformations de systèmes différentiels et microdifférentiels, in Mathematics and physics (Paris, 1979/1982), Progress in Mathematics, Volume 37, pp. 353379 (Birkhäuser, Boston, MA, 1983).
14.Malgrange, B., La classification des connexions irrégulières à une variable, in Mathematics and physics (Paris, 1979/1982), Progress in Mathematics, Volume 37, pp. 381399 (Birkhäuser, Boston, MA, 1983).
15.Malgrange, B., Équations différentielles à coefficients polynomiaux, Progress in Mathematics, Volume 96 (Birkhäuser, Boston, MA, 1991).
16.Malgrange, B., Connexions méromorphies 2, Le réseau canonique, Invent. Math. 124 (1996), 367387.
17.Mebkhout, Z., Le théorème de comparaison entre cohomologies de de Rham sur le corps des nombres complexes, C. R. Acad. Sci. Paris Sér. I 305 (1987), 549552.
18.Mebkhout, Z., Le théorème de comparaison entre cohomologies de de Rham d'une variété algèbrique complexe et le théorème d'existence de Riemann, Publ. Math. IHES 69 (1989), 4789.
19.Mochizuki, T., Good formal structure for meromorphic flat connections on smooth projective surfaces, in Algebraic analysis and around, Advanced Studies in Pure Mathematics, Volume 54 (American Mathematical Society, Providence, RI, 2009).
20.Mochizuki, T., On Deligne–Malgrange lattices, resolution of turning points and harmonic bundles, Annales Inst. Fourier 59 (2009), 28192837.
21.Mochizuki, T., Wild harmonic bundles and wild pure twistor D-modules, Astérisque, in press.
22.Mochizuki, T., Asymptotic behaviour of variation of pure polarized TERP structures, Publ. RIMS Kyoto, in press.
23.Sabbah, C., Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque, Volume 263 (Société Mathématique de France, Paris, 2000).
24.Sabbah, C., Introduction to Stokes structures, preprint (arXiv:0912.2762).
25.Sibuya, Y., Linear differential equations in the complex domain: problems of analytic continuation (Kinokuniya, Tokyo, 1976) (in Japanese; translation appeared in Translations of Mathematical Monographs, Volume 82 (American Mathematical Society, Providence, RI, 1990)).
26.van der Put, M. and Saito, M.-H., Moduli spaces for linear differential equations and the Painlevé equations, Annales Inst. Fourier 59 (2009), 26112667.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed