Skip to main content Accessibility help
×
Home

A robustly chain transitive attractor with singularities of different indices

  • Christian Bonatti (a1), Ming Li (a2) and Dawei Yang (a3)

Abstract

Given a 4-manifold, we build a non-empty ${C}^{1} $ -open set of vector fields having a (chain transitive) attractor containing singularities of different indices. Then, we begin the study of the hyperbolic properties of such a robust singular attractor.

Copyright

References

Hide All
1.Afraĭmovič, V., Bykov, V. and Shilnikov, L., The origin and structure of the Lorenz attractor, Dokl. Akad. Nauk SSSR 234 (1977), 336339.
2.Aoki, N., The set of Axiom A diffeomorphisms with no cycles, Bol. Soc. Bras. Mat. 23 (1992), 2165.
3.Arroyo, A. and Rodriguez Hertz, F., Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 805841.
4.Bamón, R., Kiwi, J. and Rivera, J., Wild Lorenz like attractors, preprint (2006).
5.Bonatti, C. and Crovisier, S., Récurrence et généricité, Invent. Math. 158 (1) (2004), 33104.
6.Bonatti, C. and Díaz, L., Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. (2) 143 (1996), 357396.
7.Bonatti, C., Díaz, L. and Pujals, E., A ${C}^{1} $-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicty or infinitely many sinks or sources, Ann. of Math. (2) 158 (2003), 355418.
8.Bonatti, C., Díaz, L., Pujals, E. and Rocha, J., Robustly transitive sets and heterodimensional cycles. Geometric methods in dynamics. I, Astérisque 286 (2003), 187222.
9.Bonatti, C., Díaz, L. and Viana, M., Discontinuity of the Hausdorff dimension of hyperbolic sets, C. R. Acad. Sci. Paris Sér. I Math. 320 (6) (1995), 713718.
10.Bonatti, C., Gourmelon, N. and Vivier, T., Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems 26 (2006), 13071337.
11.Bonatti, C., Li, M. and Yang, D., On the existence of attractors, preprint (2008).
12.Bonatti, C. and Viana, M., SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2002), 157193.
13.Bonatti, C., Pumariño, A. and Viana, M., Lorenz attractors with arbitrary expanding dimension, C. R. Acad. Sci. Paris 325 (1997), 883888.
14.Doering, C. I., Persistently transitive vector fields on three dimensional manifolds, Proc. on dynamical systems and bifurcation theory, Pitman Res. Notes Math. Ser. 160 (1987), 5989.
15.Díaz, L., Pujals, E. and Ures, R., Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999), 143.
16.Gan, S., Li, M. and Wen, L., Robustly transitive singular sets via approach of an extended linear Poincaré flow, Discrete Contin. Dyn. Syst. 13 (2005), 239269.
17.Gan, S. and Wen, L., Nonsingular star flows satisfy Axiom A and the nocycle condition, Invent. Math. 164 (2006), 279315.
18.Gan, S., Wen, L. and Zhu, S., Indices of singularities of robustly transitive sets, preprint (2007).
19.Guchenheimer, J., A strange, strange attractor, in The Hopf bifurcation theorems and its applications, Applied Mathematical Series, 19. pp. 368381. (Springer-Verlag, 1976).
20.Guchenheimer, J. and Williams, R., Structural stability of Lorenz attractors, Publ. Math. Inst. Hautes Études Sci. 50 (1979), 5972.
21.Hayashi, S., Diffeomorphisms in ${ \mathcal{F} }^{1} (M)$ satisfy Axiom A, Ergodic Theory Dyn. Syst. 12 (1992), 233253.
22.Hayashi, S., Connecting invariant manifolds and the solution of the ${C}^{1} $ stability conjecture and $\Omega $-stability conjecture for flows, Ann. of Math. (2) 145 (1997), 81137.
23.Liao, S., On the stability conjecture, Chin. Ann. Math. 1 (1980), 930.
24.Lorenz, E. N., Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), 130141.
25.Mañé, R., An ergodic closing lemma, Ann. of Math. (2) 116 (1982), 503540.
26.Mañé, R., A proof of the ${C}^{1} $ stability Conjecture, Publ. Math. Inst. Hautes Études Sci. 66 (1988), 161210.
27.Metzger, R. and Morales, C., Sectional-hyperbolic systems, preprint (2005).
28.Morales, C. and Pacifico, M., A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems 23 (2003), 15751600.
29.Morales, C., Pacifico, M. and Pujals, E., On ${C}^{1} $ robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris 326 (1998), 8186.
30.Morales, C., Pacifico, M. and Pujals, E., Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2004), 375432.
31.Morales, C. and Pujals, E., Singular strange attractors on the boundary of Morse–Smale systems, Ann. Sci. Éc. Norm. Supér. (4) 30 (1997), 693717.
32.Pugh, C., The closing lemma, Amer. J. Math. 89 (1967), 9561009.
33.Pujals, E. R. and Sambarino, M., Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. (2) 151 (3) (2000), 9611023.
34.Shilnikov, L. P., Shilnikov, A. L., Taruve, D. V. and Chua, L. O., Methods of qualitative theory in nonlinear dynamics, World Scientific, Series A, Volume 5.
35.Vivier, T., Flots robustement transitifs sur les variétés compactes, C. R. Acad. Sci. Paris 337 (2003), 791796.
36.Wen, L., On the C1-stability conjecture for flows, J. Differential Equations 129 (1996), 334357.
37.Wen, L., Homoclinic tangencies and dominated splittings, Nonlinearity 15 (2002), 14451469.
38.Wen, L., Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc. (N.S.) 35 (2004), 419452.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

A robustly chain transitive attractor with singularities of different indices

  • Christian Bonatti (a1), Ming Li (a2) and Dawei Yang (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.