Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T21:22:28.208Z Has data issue: false hasContentIssue false

MICROLOCAL REGULARITY FOR MIZOHATA TYPE DIFFERENTIAL OPERATORS

Published online by Cambridge University Press:  27 September 2018

G. Hoepfner
Affiliation:
Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brasil (hoepfner@dm.ufscar.br)
R. Medrado
Affiliation:
Universidade Federal do Ceará, Sobral, CE, Rua Estanislau Frota, 563, 62010-560, Brasil (renanmedrado@sobral.ufc.br)

Abstract

We investigate interesting connections between Mizohata type vector fields and microlocal regularity of nonlinear first-order PDEs, establishing results in Denjoy–Carleman classes and real analyticity results in the linear case.

Type
Research Article
Copyright
© Cambridge University Press 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The work was supported in part by CAPES (grant number 2013/0224), CNPq (grant number 305746/2015-4) and FAPESP (grant numbers 2017/03825-1 and 2017/06993-2).

References

Adwan, Z. and Berhanu, S., On microlocal analyticity and smoothness of solutions of first-order nonlinear PDE’s, Math. Ann. 352(1) (2012), 239258.Google Scholar
Adwan, Z. and Hoepfner, G., A generalization of Borel’s theorem and microlocal Gevrey regularity in involutive structures, J. Differential Equations 245 (2008), 28462870.Google Scholar
Adwan, Z. and Hoepfner, G., Aproximate solutions and micro-regularity in the Denjoy–Carleman Classes, J. Differential Equations 249(9) (2010), 22692286.Google Scholar
Adwan, Z. and Hoepfner, G., Denjoy–Carleman classes: boundary values, approximate solutions and applications, J. Geom. Anal. 25(3) (2015), 17201743.Google Scholar
Adwan, Z., Hoepfner, G. and Raich, A., Global L q-Gevrey functions and their applications, J. Geom. Anal. 27(3) (2017), 18741913.Google Scholar
Albanese, A. A., Jornet, D. and Oliaro, A., Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes, Math. Nachr. 285(4) (2012), 411425.Google Scholar
Asano, C. H., On the C wave-front set of solutions of first-order nonlinear PDE’s, Proc. Amer. Math Soc. 123(10) (1995), 30093019.Google Scholar
Barostichi, R. F. and Petronilho, G., Gevrey micro-regularity for solutions to first order nonlinear PDE, J. Differential Equations 247(6) (2009), 18991914.Google Scholar
Bell, S., Mapping problems in complex analysis and the ̄-problem, Bull. Amer. Math. Soc. (N.S.) 22(2) (1990), 233259.Google Scholar
Berhanu, S., On microlocal analyticity of solutions of first-order nonlinear PDE, Ann. Inst. Fourier 59(4) (2009), 12671290.Google Scholar
Berhanu, S., On Involutive Systems of First-order Nonlinear Partial Differential Equations, in Complex Analysis, Trends in Mathematics, pp. 2550 (Birkhäuser, Basel, 2010).Google Scholar
Berhanu, S., Cordaro, P. and Hounie, J., An Introduction to Involutive Structures, New Mathematical Monographs, 6 (Cambridge University Press, Cambridge, 2008).Google Scholar
Bros, J. and Iagolnitzer, D., Causality and local analyticity: mathematical study, Ann. Inst. H. Poincaré Sect. A. (N.S.) 18 (1973), 147184.Google Scholar
Bros, J. and Iagolnitzer, D., Tuboïdes et structure analytiques des distribution. II. Support essentiel et structure analytique des distributions, in Sém. Goulaouic-Lions-Schwartz (1975). Exposé no. 18 1974–1975.Google Scholar
Chemin, J. Y., Calcul paradiffèrentiel prècisè et applications à des equations aux dèrivèes partielles non semilinèaires, Duke Math. J. 56 (1988), 431469.Google Scholar
Dattori da Silva, P. and Fronza da Silva, M., Gevrey global solvability of non-singular real first-order differential operators, Ann. Mat. 192 (2013), 245253.Google Scholar
Duistermaat, J. and Hörmander, L., Fourier integral operators II, Acta Math. 128 (1972), 183269.Google Scholar
Hanges, N., Almost Mizohata operators, Trans. Amer. Math. Soc. 2 (1986), 663675.Google Scholar
Hanges, N. and Treves, F., On the analyticity of solutions of first-order nonlinear PDE, Trans. Amer. Math. Soc. 331 (1992), 627638.Google Scholar
Hoepfner, G. and Medrado, R., The FBI transforms and their use in microlocal analysis, J. Funct. Anal. 275(5) (2018), 12081258.Google Scholar
Hoepfner, G. and Ragognette, L., FBI-BH transform for analytic functionals, Preprint (2018).Google Scholar
Kim, J. and Kim, S.-O., Note on Mizohata type operators, J. Korean Math. Soc. 18(2) (1981/82), 167174.Google Scholar
Komatsu, H., Ultradistributions. I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25105.Google Scholar
Lambert, A., Quelques theoremes de decomposition des ultra-distributions, Ann. Inst. Fourier (Grenoble) 29 (1979), 57100.Google Scholar
Lerner, N., Morimoto, Y. and Xu, C.-Y., Instability of the Cauchy–Kovalewskaya solution for a class of non linear systems, Amer. J. Math. 132(1) (2010), 99123.Google Scholar
Lions, J. L. and Magenes, E., Problèmes aux limites non homogènes, vol. 3 (Dunod, Paris, 1970).Google Scholar
Mandelbrojt, S., Séries adhérentes, régularisation des Suites, aplications (Gauthier-Villars, Paris, 1952).Google Scholar
Medrado, R., Microlocal analysis in Denjoy–Carleman classes, Ph.D. thesis (in Portuguese), UFSCar (2016).Google Scholar
Ninomiya, H., A necessary and sufficient condition of local integrability, J. Math. Kyoto Univ. 39‐4 (1999), 685696.Google Scholar
Nirenberg, L. and Treves, F., On local sovability of linear partial differential equations part I: necessary conditions, Commun. Pure Appl. Math. XXIII (1970), 138.Google Scholar
Nirenberg, L. and Treves, F., On local sovability of linear partial differential equations. Part II: Sufficient conditions, Commun. Pure Appl. Math. XXIII (1970), 459510.Google Scholar
Nunes, L. R., Resolubilidade local para duas classes de campos de vetores suaves complexos. PhD thesis (in portuguese) UFSCar (2016).Google Scholar
Nunes, L. R. and dos Santos Filho, R. S., On local solvability for a class of generalized Mizohata equations, Preprint.Google Scholar
Rodino, L., Linear Partial Differential Operators in Gevrey Spaces (World Scientific, 1993).Google Scholar
Rolin, J. P., Speisseger, P. and Wilkie, A. J., Quasianalytic Denjoy–Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751777.Google Scholar
Sjöstrand, J., Note on a paper of F. Trèves concerning Mizohata type operators, Duke Math. J. 47(3) (1980), 601608.Google Scholar
Treves, F., Remarks about certain first-order linear PDE in two variables, Comm. Partial Differential Equations 5 (1980).Google Scholar
Zanguirati, L., Pseudodifferential operators of infinite order and Gevrey classes, Ann. Univ. Ferrara - Sez. VII - Sc. Mat. XXXI (1985), 197219.Google Scholar