Skip to main content Accessibility help


  • Amina Mecherbet (a1) and Matthieu Hillairet (a1)


In this paper, we consider the Stokes equations in a perforated domain. When the number of holes increases while their radius tends to 0, it is proven in Desvillettes et al. [J. Stat. Phys. 131 (2008) 941–967], under suitable dilution assumptions, that the solution is well approximated asymptotically by solving a Stokes–Brinkman equation. We provide here quantitative estimates in $L^{p}$ -norms of this convergence.



Hide All
1. Allaire, G., Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes, Arch. Ration. Mech. Anal. 113(3) (1990), 209259.
2. Beliaev, A. Yu. and Kozlov, S. M., Darcy equation for random porous media, Comm. Pure Appl. Math. 49(1) (1996), 134.
3. Boudin, L., Desvillettes, L., Grandmont, C. and Moussa, A., Global existence of solutions for the coupled Vlasov and Navier–Stokes equations, Differ. Integral Equ. 22(11–12) (2009), 12471271.
4. Cioranescu, D. and Murat, F., Un terme étrange venu d’ailleurs, in Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. II (Paris, 1979/1980), Research Notes in Mathematics, Volume 60, pp. 98138, 389–390 (Pitman, Boston, MA, London, 1982).
5. Desvillettes, L., Golse, F. and Ricci, V., The mean field limit for solid particles in a Navier–Stokes flow, J. Stat. Phys. 131 (2008), 941967.
6. Galdi, G. P., An Introduction to the Mathematical Theory of the Navier–Stokes Equations, 2nd edn, Springer Monographs in Mathematics, (Springer, New York, 2011).
7. Hamdache, K., Global existence and large time behaviour of solutions for the Vlasov–Stokes equations, Jpn. J. Ind. Appl. Math. 15(1) (1998), 5174.
8. Hauray, M. and Jabin, P.-E., Particle approximation of Vlasov equations with singular forces: propagation of chaos, Ann. Sci. Éc. Norm. Supér. (4) 48(4) (2015), 891940.
9. Hillairet, M., On the homogenization of the Stokes problem in a perforated domain,, August 2016.
10. Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Course of Theoretical Physics, Volume 6, (Pergamon Press, London, 1959). Translated from the Russian by J. B. Sykes and W. H. Reid.
11. Mischler, S. and Mouhot, C., Kac’s program in kinetic theory, Invent. Math. 193(1) (2013), 1147.
12. Raymond, J.-P., Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24(6) (2007), 921951.
13. Rubinstein, J., On the macroscopic description of slow viscous flow past a random array of spheres, J. Stat. Phys. 44(5–6) (1986), 849863.
14. Villani, C., Optimal Transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Volume 338, (Springer, Berlin, 2009). Old and new.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed