Skip to main content Accessibility help


  • Noriyuki Abe (a1) and Masaharu Kaneda (a2)


Let $G$ be a reductive algebraic group over an algebraically closed field of positive characteristic, $G_{1}$ the Frobenius kernel of $G$ , and $T$ a maximal torus of $G$ . We show that the parabolically induced $G_{1}T$ -Verma modules of singular highest weights are all rigid, determine their Loewy length, and describe their Loewy structure using the periodic Kazhdan–Lusztig $P$ - and $Q$ -polynomials. We assume that the characteristic of the field is sufficiently large that, in particular, Lusztig’s conjecture for the irreducible $G_{1}T$ -characters holds.



Hide All
1. Abe, N. and Kaneda, M., On the structure of parabolically induced G 1 T-Verma modules, J. Inst. Math. Jussieu 14(01) (2015), 185220.
2. Andersen, H. H., Jantzen, J. C. and Soergel, W., Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p: independence of p , Astérisque 220 (1994), 1321 (SMF).
3. Andersen, H. H. and Kaneda, M., Loewy series of modules for the first Frobenius kernel in a reductive algebraic group, Proc. Lond. Math. Soc. (3) 59 (1989), 7498.
4. Beilinson, A., Ginzburg, D. and Soergel, W., Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9(2) (1996), 473527.
5. Bezrukavnikov, R., Mirkovic, I. and Rumynin, D., Singular localization and intertwining functors for reductive Lie algebras in prime characteristic, Nagoya Math. J. 184 (2006), 155.
6. Bezrukavnikov, R., Mirkovic, I. and Rumynin, D., Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math. (2) 167 (2008), 945991.
7. Fiebig, P., Lusztig’s conjecture as a moment graph problem, Bull. Lond. Math. Soc. 42(6) (2010), 957972.
8. Fiebig, P., An upper bound on the exceptional characteristics for Lusztig’s character formula, J. reine angew. Math. 673 (2012), 131.
9. Irving, R. S., Projective modules in the category 𝓞 S : Loewy series, Trans. Amer. Math. Soc. 291(2) (1985), 733754.
10. Irving, R. S., The socle filtration of a Verma module, Ann. Sci. Éc. Norm. Supér. (4) 21 (1988), 4765.
11. Jantzen, J. C., Representations of Algebraic Groups (American Mathematical Society, 2003).
12. Jantzen, J. C., Representations of Lie algebras in prime characteristic, in Representation Theories and Algebraic Geometry (ed. Broer, A.), pp. 185235 (Kluwer, 1998).
13. Kaneda, M., The Kazhdan–Lusztig polynomials arising in the modular representation theory of reductive algebraic groups, RIMS Kōkyūroku 670 (1988), 129162.
14. Kato, S., On the Kazhdan–Lusztig polynomials for affine Weyl groups, Adv. Math. 55 (1995), 103130.
15. Lusztig, G., Hecke algebras and Jantzen’s generic decomposition patterns, Adv. Math. 37 (1980), 121164.
16. Riche, S., Koszul duality and modular representations of semisimple Lie algebras, Duke Math. J. 154 (2010), 31134.
17. Williamson, G., Kontorovich, A. and McNamara, P., Schubert calculus and torsion explosion, arXiv:1309.5055v2.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


  • Noriyuki Abe (a1) and Masaharu Kaneda (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed