Skip to main content Accessibility help


  • Deepam Patel (a1), Tobias Schmidt (a2) and Matthias Strauch (a3)


In this paper we study certain sheaves of $p$ -adically complete rings of differential operators on semistable models of the projective line over the ring of integers in a finite extension $L$ of $\mathbb{Q}_{p}$ . The global sections of these sheaves can be identified with (central reductions of) analytic distribution algebras of wide open congruence subgroups. It is shown that the global sections functor furnishes an equivalence between the categories of coherent module sheaves and finitely presented modules over the distribution algebras. Using the work of M. Emerton, we then describe admissible representations of $\text{GL}_{2}(L)$ in terms of sheaves on the projective limit of these formal schemes. As an application, we show that representations coming from certain equivariant line bundles on Drinfeld’s first étale covering of the $p$ -adic upper half plane are admissible.



Hide All

M. S. would like to acknowledge the support of the National Science Foundation (award DMS-1202303). T. S. would like to acknowledge support of the Heisenberg Programme of Deutsche Forschungsgemeinschaft.



Hide All
1. Ardakov, K., D̂-modules on rigid analytic spaces, in Proceedings of International Congress of Mathematicians, 2014, Volume III, pp. 19 (Kyung Moon Sa co. Ltd., Seoul, Korea).
2. Ardakov, K. and Wadsley, S., On irreducible representations of compact p-adic analytic groups, Ann. of Math. (2) 178(2) (2013), 453557.
3. Beĭlinson, A. and Bernstein, J., Localisation de g-modules, C. R. Acad. Sci. Paris I Math. 292(1) (1981), 1518.
4. Berthelot, P., Cohomologie rigide et cohomologie rigide à supports propres (première partie), Preprint. Available at:
5. Berthelot, P., D-modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. Sci. Éc. Norm. Supér. (4) 29 (1996), 185272.
6. Berthelot, P., Cohomologie rigide et théorie des D-modules, in p-Adic Analysis (Trento, 1989), Lecture Notes in Mathematics, Volume 1454, pp. 80124 (Springer, Berlin, 1990).
7. Boutot, J.-F. and Carayol, H., Uniformisation p-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfeld, Astérisque 196–197 (1991), 45158.
8. Caro, D., Fonctions L associées aux D-modules arithmétiques. Cas des courbes, Compos. Math. 142(1) (2006), 169206.
9. Chiarellotto, B., Duality in rigid analysis, in p-Adic Analysis (Trento, 1989), Lecture Notes in Mathematics, Volume 1454, pp. 142172 (Springer, Berlin, 1990).
10. Crew, R., Arithmetic D-modules on a formal curve, Math. Ann. 336(2) (2006), 439448.
11. de Jong, A. J., Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. Inst. Hautes Études Sci. 82 (1995), 596. (1996).
12. Deligne, P. and Lusztig, G., Representations of reductive groups over finite fields, Ann. of Math. (2) 103(1) (1976), 103161.
13. Drinfel’d, V. G., Coverings of p-adic symmetric domains, Funkcional. Anal. i Priložen. 10(2) (1976), 2940.
14. Emerton, M., Locally analytic vectors in representations of locally p-adic analytic groups, Mem. AMS. (to appear) Preprint.
15. Emerton, M., Jacquet modules of locally analytic representations of p-adic reductive groups. I. Construction and first properties, Ann. Sci. Éc. Norm. Supér. (4) 39(5) (2006), 775839.
16. Faltings, G., The trace formula and Drinfel’d’s upper halfplane, Duke Math. J. 76(2) (1994), 467481.
17. Fresnel, J. and van der Put, M., Rigid Analytic Geometry and its Applications, Progress in Mathematics, Volume 218 (Birkhäuser Boston Inc., Boston, MA, 2004).
18. Grosse-Klönne, E., On the crystalline cohomology of Deligne–Lusztig varieties, Finite Fields Appl. 13(4) (2007), 896921.
19. Grothendieck, A., Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Études Sci. 8 (1961), 222.
20. Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math. Inst. Hautes Études Sci. 11 (1961), 167.
21. Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, Volume 52 (Springer, New York, 1977).
22. Hotta, R., Takeuchi, K. and Tanisaki, T., D-Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics, Volume 236, (Birkhäuser Boston Inc., Boston, MA, 2008). Translated from the 1995 Japanese edition by Takeuchi.
23. Huyghe, C., D -affinité de l’espace projectif, Compositio Math. 108(3) (1997), 277318. With an appendix by P. Berthelot.
24. Huyghe, C., Patel, D., Schmidt, T. and Strauch, M., $\mathscr{D}^{\dagger }$ -affinity of formal models of flag varieties, Preprint, 2015, arXiv:1501.05837.
25. Kato, K., Logarithmic structures of Fontaine–Illusie, in Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), pp. 191224 (Johns Hopkins University Press, Baltimore, MD, 1989).
26. Montagnon, C., Généralisation de la théorie arithmétique des $\mathscr{D}$ -modules à la géométrie logarithmique. Thesis, Université de Rennes, 2002, available at:
27. Noot-Huyghe, C. and Schmidt, T., $D$ -modules arithmétiques, distributions et localisation, Preprint, 2013.
28. Noot-Huyghe, C. and Trihan, F., Sur l’holonomie de D-modules arithmétiques associés à des F-isocristaux surconvergents sur des courbes lisses, Ann. Fac. Sci. Toulouse Math. (6) 16(3) (2007), 611634.
29. Ogus, A., F-isocrystals and de Rham cohomology. II. Convergent isocrystals, Duke Math. J. 51(4) (1984), 765850.
30. Ogus, A., The convergent topos in characteristic p , in The Grothendieck Festschrift, Vol. III, Progress in Mathematics, Volume 88, pp. 133162 (Birkhäuser Boston, Boston, MA, 1990).
31. Orlik, S., Equivariant vector bundles on Drinfeld’s upper half space, Invent. Math. 172(3) (2008), 585656.
32. Orlik, S. and Strauch, M., On Jordan–Hölder series of some locally analytic representations, J. Amer. Math. Soc. 28(1) (2015), 99157.
33. Patel, D., Schmidt, T. and Strauch, M., Integral models of ℙ1 and analytic distribution algebras for GL(2), Münster J. Math. 7(1) (2014), 241271.
34. Schmidt, T., On locally analytic Beilinson–Bernstein localization and the canonical dimension, Math. Z. 275(3–4) (2013), 793833.
35. Schmidt, T. and Strauch, M., Dimensions of some locally analytic representations, Represent. Theory 20 (2016), 1438.
36. Schneider, P., Nonarchimedean Functional Analysis, Springer Monographs in Mathematics (Springer, Berlin, 2002).
37. Schneider, P. and Teitelbaum, J., Locally analytic distributions and p-adic representation theory, with applications to GL2 , J. Amer. Math. Soc. 15(2) (2002), 443468. (electronic).
38. Schneider, P. and Teitelbaum, J., Algebras of p-adic distributions and admissible representations, Invent. Math. 153(1) (2003), 145196.
39. Shiho, A., Relative log convergent cohomology and relative rigid cohomology I, Preprint, 2008, arXiv:0707.1742.
40. Shiho, A., Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9(1) (2002), 1163.
41. Teitelbaum, J., On Drinfel’d’s universal formal group over the p-adic upper half plane, Math. Ann. 284(4) (1989), 647674.
42. Teitelbaum, J., Geometry of an étale covering of the p-adic upper half plane, Ann. Inst. Fourier (Grenoble) 40(1) (1990), 6878.
43. Tsuzuki, N., On base change theorem and coherence in rigid cohomology, Doc. Math. (Extra Vol.) (2003), 891918. (electronic). Kazuya Kato’s fiftieth birthday.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


  • Deepam Patel (a1), Tobias Schmidt (a2) and Matthias Strauch (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed