Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T10:27:47.966Z Has data issue: false hasContentIssue false

KHOVANOV SPECTRA FOR TANGLES

Published online by Cambridge University Press:  28 September 2021

Tyler Lawson
Affiliation:
Department of Mathematics, University of Minnesota, Minneapolis, MN 55455 (tlawson@math.umn.edu)
Robert Lipshitz*
Affiliation:
Department of Mathematics, University of Oregon, Eugene, OR 97403
Sucharit Sarkar
Affiliation:
Department of Mathematics, University of California, Los Angeles, CA 90095 (sucharit@math.ucla.edu)

Abstract

We define stable homotopy refinements of Khovanov’s arc algebras and tangle invariants.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. F., Stable Homotopy and Generalised Homology , Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 1974).Google Scholar
Asaeda, M. M., Przytycki, J. H. and Sikora, A. S., Categorification of the skein module of tangles, in Primes and Knots, Vol. 416 of Contemp. Math. (American Mathematical Society, Providence, RI, 2006), 18.Google Scholar
Atiyah, M., The Geometry and Physics of Knots , Lezioni Lincee (Cambridge University Press, Cambridge, 1990).Google Scholar
Baldwin, J. A., On the spectral sequence from Khovanov homology to Heegaard Floer homology, Int. Math. Res. Not. IMRN 15 (2011), 34263470.Google Scholar
Bar-Natan, D., Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005), 14431499.CrossRefGoogle Scholar
Blumberg, A. J. and Mandell, M. A., Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol. 16(2) (2012), 10531120.CrossRefGoogle Scholar
Boardman, J. M. and Vogt, R. M., Homotopy invariant algebraic structures on topological spaces , Lecture Notes in Mathematics, Vol. 347 (Springer, Berlin, 1973).Google Scholar
Bousfield, A. K. and Friedlander, E. M., Homotopy theory of $\varGamma$ -spaces, spectra, and bisimplicial sets, in Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II , Vol. 658 of Lecture Notes in Math. (Springer, Berlin, 1978), 80130.CrossRefGoogle Scholar
Bousfield, A. K. and Kan, D. M., Homotopy limits, completions and localizations , Lecture Notes in Mathematics, Vol. 304 (Springer, Berlin, 1972).Google Scholar
Brundan, J. and Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra I: cellularity, Mosc. Math. J., 11(4) (2011), 685722, 821–822.CrossRefGoogle Scholar
Chen, Y. and Khovanov, M., An invariant of tangle cobordisms via subquotients of arc rings, Fund. Math., 225(1) (2014), 2344.CrossRefGoogle Scholar
Chorny, B., A generalization of Quillen’s small object argument, J. Pure Appl. Algebra 204(3) (2006), 568583.10.1016/j.jpaa.2005.06.013CrossRefGoogle Scholar
Church, T., Ellenberg, J. S. and Farb, B., FI-modules and stability for representations of symmetric groups, Duke Math. J., 164(9) (2015), 18331910.CrossRefGoogle Scholar
Cohen, R. L., The Floer homotopy type of the cotangent bundle, Pure Appl. Math. Q. 6(2) (2010), 391438. Special issue in honor of Michael Atiyah and Isadore Singer.CrossRefGoogle Scholar
Cohen, R. L., Jones, J. D. S. and Segal, G. B., Floer’s infinite-dimensional Morse theory and homotopy theory, in The Floer Memorial Volume, Vol. 133 of Progr. Math. (Birkhäuser, Basel, Switzerland, 1995), 297325.CrossRefGoogle Scholar
Crane, L. and Frenkel, I. B., Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35(10) (1994), 51365154.CrossRefGoogle Scholar
Donaldson, S. K., Polynomial invariants for smooth four-manifolds, Topology 29(3) (1990), 257315.10.1016/0040-9383(90)90001-ZCrossRefGoogle Scholar
Elmendorf, A. D., Kriz, I., Mandell, M. A. and May, J. P., Rings, Modules, and Algebras in Stable Hyomotopy Theory , Vol. 47 of Mathematical Surveys and Monographs (American Mathematical Society, Providence, RI, 1997). With an appendix by M. Cole.Google Scholar
Elmendorf, A. D. and Mandell, M. A., Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205(1) (2006), 163228.CrossRefGoogle Scholar
Everitt, B., Lipshitz, R., Sarkar, S. and Turner, P., Khovanov homotopy types and the Dold--Thom functor, Homology Homotopy Appl. 18(2) (2016), 177181.CrossRefGoogle Scholar
Everitt, B. and Turner, P., The homotopy theory of Khovanov homology, Algebr. Geom. Topol. 14(5) (2014), 27472781.CrossRefGoogle Scholar
Floer, A., An instanton-invariant for $3$ -manifolds, Comm. Math. Phys. 118(2) (1988), 215240.CrossRefGoogle Scholar
Garner, R. and Shulman, M., Enriched categories as a free cocompletion, Adv. Math. 289 (2016), 194.CrossRefGoogle Scholar
Hovey, M., Shipley, B. and Smith, J., Symmetric spectra, J. Amer. Math. Soc. 13(1) (2000), 149208.CrossRefGoogle Scholar
Hu, P., Kriz, D. and Kriz, I., Field theories, stable homotopy theory and Khovanov homology, Topology Proc. 48 (2016), 327360.Google Scholar
Hu, P., Kriz, I. and Somberg, P., Derived representation theory of Lie algebras and stable homotopy categorification of $s{l}_k$ , Adv. Math. 341 (2019), 367439.CrossRefGoogle Scholar
Isbell, J. R., On coherent algebras and strict algebras, J. Algebra 13 (1969), 299307.CrossRefGoogle Scholar
Jacobsson, M., An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004), 12111251.CrossRefGoogle Scholar
Jones, V. F. R., A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12(1) (1985), 103111.CrossRefGoogle Scholar
Khandhawit, T., Lin, J. and Sasahira, H., Unfolded Seiberg–Witten–Floer spectra, I: Definition and invariance, Geom. Topol. 22(4) (2018), 20272114.CrossRefGoogle Scholar
Khovanov, M., A categorification of the Jones polynomial, Duke Math. J. 101(3) (2000), 359426.CrossRefGoogle Scholar
Khovanov, M., A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665741.10.2140/agt.2002.2.665CrossRefGoogle Scholar
Khovanov, M., An invariant of tangle cobordisms, Trans. Amer. Math. Soc. 358(1) (2006), 315327.CrossRefGoogle Scholar
Khovanov, M. and Lauda, A. D., A diagrammatic approach to categorification of quantum groups, I. Represent. Theory 13 (2009), 309347.10.1090/S1088-4165-09-00346-XCrossRefGoogle Scholar
Kragh, T., The Viterbo transfer as a map of spectra, J. Symplectic Geom. 16(1) (2018), 85226.CrossRefGoogle Scholar
Kronheimer, P. and Manolescu, C., Periodic Floer pro-spectra from the Seiberg--Witten equations, Preprint, 2002, arXiv:math/0203243.Google Scholar
Lambek, J.. Deductive systems and categories. II. Standard constructions and closed categories, in Category Theory, Homology Theory and Their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One) (Springer, Berlin, 1969), 76122.Google Scholar
Lauda, A. D., A categorification of quantum  $\mathrm{sl}(2)$ , Adv. Math. 225(6) (2010), 33273424.10.1016/j.aim.2010.06.003CrossRefGoogle Scholar
Lawson, T., Lipshitz, R. and Sarkar, S., The cube and the Burnside category, in Categorification in Geometry, Topology, and Physics, Vol. 684 of Contemp. Math. (American Mathematical Society, Providence, RI, 2017), 6385.CrossRefGoogle Scholar
Lawson, T., Lipshitz, R. and Sarkar, S., Khovanov homotopy type, Burnside category and products, Geom. Topol. 24(2) (2020), 623745.CrossRefGoogle Scholar
Lipshitz, R. and Sarkar, S., A Khovanov stable homotopy type, J. Amer. Math. Soc. 27(4) (2014), 9831042.CrossRefGoogle Scholar
Lipshitz, R. and Sarkar, S., A refinement of Rasmussen’s $s$ -invariant, Duke Math. J. 163(5) (2014), 923952.CrossRefGoogle Scholar
Lipshitz, R. and Sarkar, S., A Steenrod square on Khovanov homology, J. Topol. 7(3) (2014), 817848.CrossRefGoogle Scholar
Lurie, J., Higher Topos Theory, Vol. 170 of Annals of Mathematics Studies (Princeton University Press, Princeton, NJ, 2009).CrossRefGoogle Scholar
Mandell, M. A., May, J. P., Schwede, S. and Shipley, B., Model categories of diagram spectra, Proc. London Math. Soc. (3) 82(2) (2001), 441512.CrossRefGoogle Scholar
Manolescu, C., Seiberg–Witten–Floer stable homotopy type of three-manifolds with ${b}_1 = 0$ , Geom. Topol. 7 (2003), 889932.CrossRefGoogle Scholar
Rasmussen, J., Khovanov homology and the slice genus, Invent. Math. 182(2) (2010), 419447.10.1007/s00222-010-0275-6CrossRefGoogle Scholar
Reshetikhin, N. and Turaev, V. G., Invariants of $3$ -manifolds via link polynomials and quantum groups, Invent. Math. 103(3) (1991), 547597.CrossRefGoogle Scholar
Roberts, L. P., A type $D$ structure in Khovanov homology, Adv. Math. 293 (2016), 81145.CrossRefGoogle Scholar
Rouquier, R., 2-Kac–Moody algebras, Preprint, 2008, arXiv:0812.5023.Google Scholar
Rozansky, L., A categorification of the stable $\mathrm{SU}(2)$ Witten–Reshetikhin–Turaev invariant of links in ${S}^2\times {S}^1$ , Preprint, 2010, arXiv:1011.1958.Google Scholar
Schwede, S., On the homotopy groups of symmetric spectra, Geom. Topol. 12(3) (2008), 13131344.CrossRefGoogle Scholar
Seed, C., Computations of the Lipshitz–Sarkar Steenrod square on Khovanov homology, Preprint, 2012, arXiv:1210.1882.Google Scholar
Webster, B., Tensor product algebras, Grassmannians and Khovanov homology, in Physics and Mathematics of Link Homology, Vol. 680 of Contemp. Math. (American Mathematical Society, Providence, RI, 2016), 2358.CrossRefGoogle Scholar
Willis, M., Khovanov homology for links in ${\#}^r\left({S}^2\times {S}^1\right)$ , Preprint, 2018, arXiv:1812.06584.Google Scholar
Witten, E., Topological quantum field theory, Comm. Math. Phys. 117(3) (1988), 353386.CrossRefGoogle Scholar
Witten, E., Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121(3) (1989), 351399.CrossRefGoogle Scholar
Zarev, R., Bordered Floer homology for sutured manifolds, Preprint, 2009, arXiv:0908.1106.Google Scholar