Skip to main content Accessibility help
×
Home

The infinitesimal index

  • C. De Concini (a1), C. Procesi (a1) and M. Vergne (a2)

Abstract

In this note, we study an invariant associated with the zeros of the moment map generated by an action form, the infinitesimal index. This construction will be used to study the compactly supported equivariant cohomology of the zeros of the moment map and to give formulas for the multiplicity index map of a transversally elliptic operator.

Copyright

References

Hide All
Atiyah, M. F., Elliptic operators and compact groups, p. 401 (Springer L.N.M., 1974).
Atiyah, M. F. and Bott, R., The moment map and equivariant cohomology, Topology 23 (1984), 128.
Berline, N., Getzler, E. and Vergne, M., Heat kernels and dirac operators. Collection Grundlehren der Mathematischen Wissenschaften, Volume 298 (Springer, Berlin, 1991).
Berline, N. and Vergne, M., The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math. 124 (1996), 1149.
Berline, N. and Vergne, M., L’indice équivariant des opérateurs transversalement elliptiques, Invent. Math. 124 (1996), 51101.
Berline, N. and Vergne, M., Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math 295 (1982), 539541.
Berline, N. and Vergne, M., Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke. Math. J. 50 (1983), 539549.
Bott, R. and Tu, L., Equivariant characteristic classes in the Cartan model, Geometry, Analysis and Applications (Varanasi 2000), pp. 320 (World Sci. Publishing, River Edge, NJ, 2001).
De Concini, C., Procesi, C. and Vergne, M., Vector partition functions and index of transversally elliptic operators, Transform. Groups 15 (2010), 775811.
De Concini, C., Procesi, C. and Vergne, M., Infinitesimal index: cohomology computations, Transform. Groups 16 (2011), 717735. (arXiv:math:1005.0128).
De Concini, C., Procesi, C. and Vergne, M., Box splines and the equivariant index theorem, To appear in JIMJ (arXiv:1012.1049).
Duflo, M. and Kumar, Shrawan, Sur la cohomologie équivariante des variétés différentiables, Astérisque 215 (1993).
Guillemin, V. and Sternberg, S., Supersymmetry and equivariant de Rham theory. With an appendix containing two reprints by Henri Cartan, in Mathematics past and present. (Springer, Berlin, 1999).
Jeffrey, L. C. and Kirwan, F. C., Localization for nonabelian group actions, Topology 34 (1995), 291327.
Jeffrey, L. C. and Kirwan, F. C., Intersection pairings in moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. Math. 148 (1998), 109191.
Kumar, Shrawan and Vergne, M., Equivariant cohomology with generalized coefficients, Astérisque 215 (1993), 109204.
Lojasiewicz, S., Triangulation of semi-analytic sets, Ann. Sc. Norm. Super. Pisa 18 (1964), 449474.
Mathai, V. and Quillen, D., Superconnections, Thom classes and equivariant differential forms, Topology 25 (1986), 85110.
Paradan, P.-E., Formules de localisation en cohomologie équivariante, Compositio Mathematica 117 (1999), 243293.
Paradan, P.-E., The moment map and equivariant cohomology with generalized coefficients, Topology 39 (2000), 401444.
Paradan, P.-E. and Vergne, M., Equivariant relative Thom forms and Chern characters, (arXiv:math/0711.3898).
Paradan, P.-E. and Vergne, M., The index of transversally elliptic operators, Astérisque 328 (2009), 297338. (arXiv:0804.1225).
Spanier, E. H., Algebraic topology. (McGraw-Hill Book Co., New York, Toronto, Ont., London, 1966), xiv+528 pp.
Vergne, M., Applications of equivariant cohomology, Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006, Volume 1, pp. 635664 (European Mathematical Society, 2007).
Witten, E., Two dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), 303368.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

The infinitesimal index

  • C. De Concini (a1), C. Procesi (a1) and M. Vergne (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.