Skip to main content Accessibility help
×
Home

Homomorphisms of abelian varieties over geometric fields of finite characteristic

  • Yuri G. Zarhin (a1)

Abstract

We study analogues of Tate’s conjecture on homomorphisms for abelian varieties when the ground field is finitely generated over an algebraic closure of a finite field. Our results cover the case of abelian varieties without non-trivial endomorphisms.

Copyright

References

Hide All
Arias-de-Reyna, S., Gajda, W. and Petersen, S., Abelian varieties over finitely generated fields and the conjecture of Geyer and Jarden on torsion (arXiv:1010.2444 [math.AG]).
Curtis, Ch. W. and Reiner, I., Representation theory of finite groups and associative algebras (Interscience Publishers, New York, London, 1962).
Deligne, P., Théorie de Hodge. II, Publ. Math. IHES 40 (1971), 558.
Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zählkorpern, Invent. Math. 73 (1983), 349366 (erratum: Invent. Math. 75 (1984), 381).
Faltings, G., Complements to Mordell, in Rational points (ed. Faltings, G. and Wüstholz, G. et al. ), Aspects of Mathematics, Volume E6, Chapter VI (Friedr. Vieweg & Sohn, Braunschweig, 1984).
Hindry, M. and Ratazzi, N., Points de torsion sur les variétés abéliennes de type GSp. J. Institut Math. Jussieu (available on CJO 05 Aug 2010 ) (arXiv:0911.5505 [math.NT]).
Moret-Bailly, L., Pinceaux de variétés abéliennes, Astérisque 129 (1985).
Mumford, D., Abelian varieties, 2nd edn (Oxford University Press, London, 1974).
Schappacher, N., Tate’s conjecture on the homomorphisms of abelian varieties, in Rational points (ed. Faltings, G. and Wüstholz, G. et al. ). Aspects of Mathematics, Volume E6, Chapter IV (Friedr. Vieweg & Sohn, Braunschweig, 1984).
Serre, J.-P., Sur les groupes des congruence des variétés abéliennes, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1) (1964), 318 Oeuvres II, pp. 230–245 (Springer-Verlag, Berlin, 1986).
Serre, J.-P., Abelian ℓ-adic representations and elliptic curves, 2nd edn (Addison-Wesley, New York, 1989).
Skorobogatov, A. N. and Zarhin, Y. G., A finiteness theorem for Brauer groups of abelian varieties and K3 surfaces, J. Algebraic Geom. 17 (3) (2008), 481502.
Tate, J., Endomorphisms of Abelian varieties over finite fields, Invent. Math. 2 (1966), 134144.
Zarhin, Y. G., Endomorphisms of Abelian varieties over fields of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975) 272–277; Math. USSR Izv. 9 (1975) 255–260.
Zarhin, Y. G., Abelian varieties in characteristic $P$, Mat. Zametki 19 (1976) 393–400; Math. Notes 19 (1976) 240–244.
Zarhin, Y. G., Endomorphisms of Abelian varieties and points of finite order in characteristic $P$, Mat. Zametki 21 (1977) 737–744; Math. Notes 21 (1978) 415–419.
Zarhin, Y. G., Torsion of abelian varieties in finite characteristic, Mat. Zametki 22 (1977), 111; Math. Notes 22 (1978), 493–498.
Zarhin, Y. G., A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction, Invent. Math. 79 (1985), 309321.
Zarhin, Y. G. and Parshin, A. N., Finiteness problems in diophantine geometry, Amer. Math. Soc. Transl. 143 (2) (1989), 35102 (arXiv:0912.4325 [math.NT]).
Zarhin, Y. G., Hyperelliptic Jacobians without complex multiplication, Math. Res. Lett. 7 (2000), 123132.
Zarhin, Y. G., Hyperelliptic Jacobians without complex multiplication in positive characteristic, Math. Res. Lett. 8 (2001), 429435.
Zarhin, Y. G., Non-supersingular hyperelliptic Jacobians, Bull. Soc. Math. France 132 (2004), 617634.
Zarhin, Y. G., Homomorphisms of abelian varieties over finite fields, in Higher-dimensional geometry over finite fields (ed. Kaledin, D. and Tschinkel, Yu. ), pp. 315343 (IOS Press, Amsterdam, 2008).
Zarhin, Y. G., Endomorphisms of abelian varieties, cyclotomic extensions and Lie algebras. Math. Sb. 201(12) (2010), 93–102; Sb. Math. 201(12) (2010), 1801–1810.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Homomorphisms of abelian varieties over geometric fields of finite characteristic

  • Yuri G. Zarhin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.