Skip to main content Accessibility help

Determinants of subquotients of Galois representations associated with abelian varieties

  • Eric Larson and Dmitry Vaintrob


Given an abelian variety $A$ of dimension $g$ over a number field  $K$ , and a prime $\ell $ , the ${\ell }^{n} $ -torsion points of $A$ give rise to a representation ${\rho }_{A, {\ell }^{n} } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ( \mathbb{Z} / {\ell }^{n} \mathbb{Z} )$ . In particular, we get a mod- $\ell $ representation  ${\rho }_{A, \ell } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{F} }_{\ell } )$ and an $\ell $ -adic representation  ${\rho }_{A, {\ell }^{\infty } } : \mathrm{Gal} ( \overline{K} / K)\rightarrow {\mathrm{GL} }_{2g} ({ \mathbb{Z} }_{\ell } )$ . In this paper, we describe the possible determinants of subquotients of these two representations. These two lists turn out to be remarkably similar.

Applying our results in dimension $g= 1$ , we recover a generalized version of a theorem of Momose on isogeny characters of elliptic curves over number fields, and obtain, conditionally on the Generalized Riemann Hypothesis, a generalization of Mazur’s bound on rational isogenies of prime degree to number fields.



Hide All
1. Conrad, B., Lifting global representations with local properties, 2010 preprint available at the webpage
2. Conrad, B., Semistable reduction for abelian varieties, Seminar Lecture Notes available at the webpage
3. Fontaine, J.-M., Le corps des périodes p-adiques, Périodes p-adiques, Astérisque 223 (1994), 59111.
4. Fontaine, J.-M., Représentations p-adiques semi-stables, Périodes p-adiques, Astérisque 223 (1994), 113184.
5. Serre, J.-P., Abelian ℓ-adic representations and elliptic curves, 2nd ed. (A.K. Peters, 1998).
1. Bach, E. and Sorenson, J., Explicit bounds for primes in residue classes, Math. Comp. 65 (216) (1996), 17171735.
2. David, A., Caractère d’isogénie et critères d’irréductibilité, Preprint available online at
3. Deligne, P., Travaux de Shimura, in Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Lecture Notes in Math., Volume 244, pp. 123165 (Springer, Berlin, 1971).
4. Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (3) (1983), 349366.
5. Friedman, E., Analytic formulas for the regulator of a number field, Invent. Math. 98 (3) (1989), 599622.
6. Grothendieck, A., Modèles de Néron et monodromie. In Séminaire de Géométrie Algébrique, Volume 7, Exposé 9.
7. Lagarias, J. C. and Odlyzko, A. M., Effective versions of the Chebotarev density theorem, in Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pp. 409464 (Academic Press, London, 1977).
8. Lenstra, H. W. Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. (N.S.) 26 (2) (1992), 211244.
9. Mazur, B., Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (2) (1978), 129162.
10. Merel, L., Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1–3) (1996), 437449.
11. Milne, J. S., Abelian varieties defined over their fields of moduli. I, Bull. Lond. Math. Soc. 4 (1972), 370372.
12. Milne, J. S., Complex multiplication (v0.00), 2006. Available at
13. Momose, F., Isogenies of prime degree over number fields, Compositio Math. 97 (3) (1995), 329348.
14. Raynaud, M., Schémas en groupes de type $(p, \ldots , p)$ , Bull. Soc. Math. France 102 (1974), 241280.
15. Rizov, J., Fields of definition of rational points on varieties. 2005. Available at
16. Serre, J.-P., Abelian l-adic representations and elliptic curves, McGill University Lecture Notes Written with the Collaboration of Willem Kuyk and John Labute (W. A. Benjamin, Inc., New York, Amsterdam, 1968).
17. Serre, J.-P., Propriétés Galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (4) (1972), 259331.
18. Serre, J.-P., Quelques applications du théorème de densité de Chebotarev, Publ. Math. Inst. Hautes Études Sci. (54) (1981), 323401.
19. Shimura, G., Algebraic number fields and symplectic discontinuous groups, Ann. of Math. (2) 86 (1967), 503592.
20. Voutier, P., An effective lower bound for the height of algebraic numbers, Acta Arith. 74 (1) (1996), 8195.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Related content

Powered by UNSILO

Determinants of subquotients of Galois representations associated with abelian varieties

  • Eric Larson and Dmitry Vaintrob


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.