Skip to main content Accessibility help
×
Home

COMPARING $\mathbb{C}$ AND ZILBER’S EXPONENTIAL FIELDS: ZERO SETS OF EXPONENTIAL POLYNOMIALS

  • P. D’Aquino (a1), A. Macintyre (a2) and G. Terzo (a1)

Abstract

We continue the research programme of comparing the complex exponential with Zilberś exponential. For the latter, we prove, using diophantine geometry, various properties about zero sets of exponential functions, proved for $\mathbb{C}$ using analytic function theory, for example, the Identity Theorem.

Copyright

References

Hide All
1.Bombieri, E. and Gubler, W., Heights in Diophantine Geometry (Cambridge University Press, 2006).
2.Bombieri, E., Masser, D. and Zannier, U., Anomalous subvarieties — structure theorems and applications, Int. Math. Res. Not. 2007 (2007), 133.
3.Bourbaki, N., Algebra II, Chapters 4–7, (Springer, 1990).
4.Cassels, J. W. S. and Fröhlich, A., Algebraic Number Theory, second edition (London Mathematical Society, 2010).
5.Conway, J. B., Functions Of One Complex Variable I, second edition (Springer, 1978).
6.D’Aquino, P., Macintyre, A. and Terzo, G., Schanuel Nullstellensatz for Zilber fields, Fund. Math. 207 (2010), 123143.
7.D’Aquino, P., Macintyre, A. and Terzo, G., From Schanuel Conjecture to Shapiro Conjecture, Comment. Math. Helv. to appear.
8.D’Aquino, P. and Terzo, G., A theorem of finite reducibility for exponential polynomials, submitted (2012).
9.van der Poorten, A. J. and Tijdeman, R., On common zeros of exponential polynomials, L’Enseign. Math. 21 (1975), 5767.
10.Evertse, J. H., Schilickewei, H. P. and Schmidt, W. M., Linear equations in variables which lie in a multiplicative group, Ann. of Math. 155 (2002), 807836.
11.Gunaydin, A., Rational solutions of polynomial–exponential equations, Internat. J. Number Theory 8(6) 13911399.
12.Györy, K. and Schinzel, A., On a Conjecture of Posner and Rumsey, J. Number Theory 47 (1994), 6378.
13.Henson, C. W. and Rubel, L. A., Some applications of Nevanlinna theory to mathematical logic: identities of exponential functions, Trans. Amer. Math. Soc. 282(1) (1984), 132.
14.Kirby, J., Macintyre, A. and Onshuus, A., The algebraic numbers definable in various exponential fields, J. Inst. Math. Jussieu 11(4) (2012), 825834.
15.Lang, S., Elliptic Functions, second edition (Springer, 1987).
16.Merel, L., Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), 437449.
17.Pólya, G., Geometiisches ber die Verteilung der Nullstellen gewisser ganzer transzendenter Funktionen, Munch. Sitzungsber. 50 (1920), 285290.
18.Ritt, J. F., A factorization theorem of functions ∑i=1na ie i𝛼z, Trans. Amer. Math. Soc. 29 (1927), 584596.
19.Zilber, B., Pseudo-exponentiation on algebraically closed fields of characteristic zero, Ann. Pure Appl. Logic 132(1) (2005), 6795.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

COMPARING $\mathbb{C}$ AND ZILBER’S EXPONENTIAL FIELDS: ZERO SETS OF EXPONENTIAL POLYNOMIALS

  • P. D’Aquino (a1), A. Macintyre (a2) and G. Terzo (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed