Skip to main content Accessibility help
×
Home

A COMBINATORIAL SOLUTION TO MŒGLIN’S PARAMETRIZATION OF ARTHUR PACKETS FOR $p$ -ADIC QUASISPLIT $Sp(N)$ AND $O(N)$

  • Bin Xu (a1)

Abstract

We develop a general procedure to study the combinatorial structure of Arthur packets for $p$ -adic quasisplit $\mathit{Sp}(N)$ and $O(N)$ following the works of Mœglin. This will allow us to answer many delicate questions concerning the Arthur packets of these groups, for example the size of the packets.

Copyright

References

Hide All
1. Arthur, J., The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, Colloquium Publications, Volume 61 (American Mathematical Society, Providence, RI, 2013).
2. Harris, M. and Taylor, R., The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Mathematics Studies, Volume 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich.
3. Henniart, G., Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math. 139(2) (2000), 439455.
4. Mœglin, C., Paquets d’arthur pour les groupes classiques; point de vue combinatoire, preprint, 2006, arXiv:math/0610189.
5. Mœglin, C., Sur certains paquets d’Arthur et involution d’Aubert–Schneider–Stuhler généralisée, Represent. Theory 10 (2006), 86129.
6. Mœglin, C., Conjecture d’Adams pour la correspondance de Howe et filtration de Kudla, in Arithmetic Geometry and Automorphic Forms, Advanced Lectures in Mathematics (ALM), Volume 19, pp. 445503 (Int. Press, Somerville, MA, 2011).
7. Mœglin, C., Image des opérateurs d’entrelacements normalisés et pôles des séries d’Eisenstein, Adv. Math. 228(2) (2011), 10681134.
8. Mœglin, C. and Waldspurger, J.-L., Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér. (4) 22(4) (1989), 605674.
9. Scholze, P., The local Langlands correspondence for GLn over p-adic fields, Invent. Math. 192(3) (2013), 663715.
10. Xu, B., On Mœglin’s parametrization of Arthur packets for p-adic quasisplit Sp (N) and SO(N), Canad. J. Math. 69(4) (2017), 890960.
11. Xu, B., On the cuspidal support of discrete series for p-adic quasisplit Sp (N) and SO(N), Manuscripta Math. 154(3) (2017), 441502.
12. Zelevinsky, A. V., Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. Éc. Norm. Supér. (4) 13(2) (1980), 165210.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

A COMBINATORIAL SOLUTION TO MŒGLIN’S PARAMETRIZATION OF ARTHUR PACKETS FOR $p$ -ADIC QUASISPLIT $Sp(N)$ AND $O(N)$

  • Bin Xu (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed