Skip to main content Accessibility help



Let $T$ be a locally finite tree without vertices of degree  $1$ . We show that among the closed subgroups of $\text{Aut}(T)$ acting with a bounded number of orbits, the Chabauty-closure of the set of topologically simple groups is the set of groups without proper open subgroup of finite index. Moreover, if all vertices of $T$ have degree ${\geqslant}3$ , then the set of isomorphism classes of topologically simple closed subgroups of $\text{Aut}(T)$ acting doubly transitively on $\unicode[STIX]{x2202}T$ carries a natural compact Hausdorff topology inherited from Chabauty. Some of our considerations are valid in the context of automorphism groups of locally finite connected graphs. Applications to Weyl-transitive automorphism groups of buildings are also presented.



Hide All

F.R.S.-FNRS Senior Research Associate, supported in part by the ERC (grant no. 278469).

F.R.S.-FNRS Research Fellow.



Hide All
1. Abramenko, P. and Brown, K. S., Buildings: Theory and Applications, Graduate Texts in Mathematics, vol. 248 (Springer, New York, 2008).
2. Abramenko, P. and Brown, K. S., Automorphisms of non-spherical buildings have unbounded displacement, Innov. Incidence Geom. 10 (2010), 113.
3. Banks, C. C., Elder, M. and Willis, G. A., Simple groups of automorphisms of trees determined by their actions on finite subtrees, J. Group Theory 18(2) (2014), 235261.
4. Bass, H., Covering theory for graphs of groups, J. Pure Appl. Algebra 89(1–2) (1993), 347.
5. Bass, H. and Kulkarni, R., Uniform tree lattices, J. Amer. Math. Soc. 3(4) (1990), 843902.
6. Bass, H. and Lubotzky, A., Tree Lattices, Progress in Mathematics, vol. 176 (Birkhäuser Boston, Inc., Boston, MA, 2001). With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits.
7. Bass, H. and Tits, J., Discreteness criteria for tree automorphism groups, in Tree lattices (ed. Bass, H. and Lubotzky, A.), Progress in Mathematics, Volume 176, pp. 185212 (Birkhäuser, Boston, 2001). Appendix to the book.
8. Bourbaki, N., Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, p. 222 (Hermann, Paris, 1963). (French).
9. Burger, M. and Mozes, S., Groups acting on trees: from local to global structure, Inst. Hautes Études Sci. Publ. Math. (92) (2000), 113150.
10. Caprace, P.-E. and Ciobotaru, C., Gelfand pairs and strong transitivity for Euclidean buildings, Ergodic Theory Dynam. Systems 35(4) (2015), 10561078.
11. Caprace, P.-E. and Monod, N., Decomposing locally compact groups into simple pieces, Math. Proc. Cambridge Philos. Soc. 150 (2011), 97128.
12. Davis, M. W., The Geometry and Topology of Coxeter Groups, London Mathematical Society Monographs Series, vol. 32 (Princeton University Press, Princeton, 2008).
13. De Medts, T., Silva, A. C. and Struyve, Koen, Universal groups for right-angled buildings, Groups Geom. Dyn. 12(1) (2018), 231287.
14. Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D., Analytic Pro-p groups, 2, Cambridge Studies in Advanced Mathematic, Volume 61 (Cambridge University Press, Cambridge, 1999).
15. Gao, S., Invariant Descriptive Set Theory, Pure and Applied Mathematics (Boca Raton), Volume 293 (CRC Press, Boca Raton, FL, 2009).
16. Gelanger, T., A lecture on invariant random subgroups, in New Directions in Locally Compact Groups (ed. Caprace, P.-E. and Monod, N.), London Mathematical Society Lecture Note Series, Volume 447, pp. 186204 (Cambridge University Press, Cambridge, 2018).
17. Guivarc’h, Y. and Rémy, B., Group-theoretic compactification of Bruhat–Tits buildings, Ann. Sci. Éc. Norm. Supér. 39(6) (2006), 871920.
18. Kaniuth, E. and Taylor, K. F., Induced representations of locally compact groups, Cambridge Tracts in Mathematics, Volume 197 (Cambridge University Press, Cambridge, 2013).
19. Marquis, T., Around the Lie correspondence for complete Kac–Moody groups and Gabber–Kac simplicity, preprint, 2015, arXiv:1509.01976.
20. Mazurkiewicz, S. and Sierpiński, W., Contribution à la topologie des ensembles dénombrables, Fund. Math. 1(1) (1920), 1727. (French).
21. Mosher, L., Sageev, M. and Whyte, K., Maximally symmetric trees, Geom. Dedicata 92 (2002), 195233. Dedicated to John Stallings on the occasion of his 65th birthday.
22. Radu, N., A classification theorem for boundary 2-transitive automorphism groups of trees, Invent. Math. 209(1) (2017), 160.
23. Serre, J.-P., Arbres, Amalgames SL2, Astérisque, Volume 46 (1977). (French).
24. Stulemeijer, T., Chabauty limits of algebraic groups acting on trees, preprint, 2016, arXiv:1610.08454.
25. Tits, J., Sur le groupe des automorphismes d’un arbre, Essays on topology and related topics (Mémoires dédiés à Georges de Rham), pp. 188211 (Springer, New York, 1970). (French).
26. Tits, J., Buildings and group amalgamations, in Proceedings of groups—St. Andrews 1985, London Mathematical Society Lecture Note Series, Volume 121, pp. 110127 (Cambridge University Press, Cambridge, 1986).
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed