Skip to main content Accessibility help


  • Amanda de Lima (a1) and Daniel Smania (a1)


Consider a $C^{2}$ family of mixing $C^{4}$ piecewise expanding unimodal maps $t\in [a,b]\mapsto f_{t}$ , with a critical point $c$ , that is transversal to the topological classes of such maps. Given a Lipchitz observable $\unicode[STIX]{x1D719}$ consider the function

$$\begin{eqnarray}{\mathcal{R}}_{\unicode[STIX]{x1D719}}(t)=\int \unicode[STIX]{x1D719}\,d\unicode[STIX]{x1D707}_{t},\end{eqnarray}$$
where $\unicode[STIX]{x1D707}_{t}$ is the unique absolutely continuous invariant probability of $f_{t}$ . Suppose that $\unicode[STIX]{x1D70E}_{t}>0$ for every $t\in [a,b]$ , where
$$\begin{eqnarray}\unicode[STIX]{x1D70E}_{t}^{2}=\unicode[STIX]{x1D70E}_{t}^{2}(\unicode[STIX]{x1D719})=\lim _{n\rightarrow \infty }\int \left(\frac{\mathop{\sum }_{j=0}^{n-1}\left(\unicode[STIX]{x1D719}\circ f_{t}^{j}-\int \unicode[STIX]{x1D719}\,d\unicode[STIX]{x1D707}_{t}\right)}{\sqrt{n}}\right)^{2}\,d\unicode[STIX]{x1D707}_{t}.\end{eqnarray}$$

We show that

$$\begin{eqnarray}m\left\{t\in [a,b]:t+h\in [a,b]\text{ and }\frac{1}{\unicode[STIX]{x1D6F9}(t)\sqrt{-\log |h|}}\left(\frac{{\mathcal{R}}_{\unicode[STIX]{x1D719}}(t+h)-{\mathcal{R}}_{\unicode[STIX]{x1D719}}(t)}{h}\right)\leqslant y\right\}\end{eqnarray}$$
converges to
$$\begin{eqnarray}\frac{1}{\sqrt{2\unicode[STIX]{x1D70B}}}\int _{-\infty }^{y}e^{-\frac{s^{2}}{2}}\,ds,\end{eqnarray}$$
where $\unicode[STIX]{x1D6F9}(t)$ is a dynamically defined function and $m$ is the Lebesgue measure on $[a,b]$ , normalized in such way that $m([a,b])=1$ . As a consequence, we show that ${\mathcal{R}}_{\unicode[STIX]{x1D719}}$ is not a Lipchitz function on any subset of $[a,b]$ with positive Lebesgue measure.



Hide All
1. Baladi, V., On the susceptibility function of piecewise expanding interval maps, Comm. Math. Phys. 275(3) (2007), 839859.
2. Baladi, V. and Smania, D., Linear response formula for piecewise expanding unimodal maps, Nonlinearity 21(4) (2008), 677711.
3. Baladi, V. and Smania, D., Smooth deformations of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst. 23(3) (2009), 685703.
4. Baladi, V. and Smania, D., Alternative proofs of linear response for piecewise expanding unimodal maps, Ergod. Th. & Dynam. Sys. 30(1) (2010), 120.
5. Baladi, V. and Smania, D., Corrigendum: linear response formula for piecewise expanding unimodal maps, Nonlinearity 25(7) (2012), 22032205.
6. Billingsley, P., Convergence of Probability Measures, second edition, Wiley Series in Probability and Statistics: Probability and Statistics (John Wiley & Sons, Inc., New York, 1999). A Wiley–Interscience Publication.
7. Contreras, F., Regularity of absolutely continuous invariant measures for piecewise expanding unimodal maps, PhD’s thesis. University of Maryland (2015).
8. Karatzas, I. and Shreve, S. E., Brownian Motion and Stochastic Calculus, second edition, Graduate Texts in Mathematics, Volume 113 (Springer-Verlag, New York, 1991).
9. Keller, G., Stochastic stability in some chaotic dynamical systems, Monatsh. Math. 94(4) (1982), 313333.
10. Keller, G., Generalized bounded variation and applications to piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete 69(3) (1985), 461478.
11. Keller, G., Howard, P. J. and Klages, R., Continuity properties of transport coefficients in simple maps, Nonlinearity 21(8) (2008), 17191743.
12. Lasota, A. and Yorke, J. A., On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1974), 481488.
13. Leplaideur, R. and Saussol, B., Central limit theorem for dimension of Gibbs measures in hyperbolic dynamics, Stoch. Dyn. 12(2) (2012), 1150019, 24.
14. Mazzolena, M., Dinamiche espansive unidimensionali: dipendenza della misura invariante da un parametro, Master’s thesis Roma 2, Tor Vergata (2007).
15. Philipp, W. and Stout, W., Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 2(2) (1975), no. 161, iv+140 pp.
16. Ruelle, D., Differentiation of SRB states, Comm. Math. Phys. 187(1) (1997), 227241.
17. Ruelle, D., Nonequilibrium statistical mechanics near equilibrium: computing higher-order terms, Nonlinearity 11(1) (1998), 518.
18. Schnellmann, D., Typical points for one-parameter families of piecewise expanding maps of the interval, Discrete Contin. Dyn. Syst. 31(3) (2011), 877911.
19. Schnellmann, D., Law of iterated logarithm and invariance principle for one-parameter families of interval maps, Probab. Theory Related Fields 162(1–2) (2015), 365409.
20. Tsujii, M., A simple proof for monotonicity of entropy in the quadratic family, Ergod. Th. & Dynam. Sys. 20(3) (2000), 925933.
21. Viana, M., Sthochastic Dynamics of Deterministic Systems, Lecture Notes XXI Colóquio Brasileiro de Matemática (IMPA, Rio de Janeiro, 1997).
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed